Merge branch 'development' into master

This commit is contained in:
Verkehrsrot 2019-03-02 13:37:50 +01:00 committed by GitHub
commit 6b667b4123
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
41 changed files with 630 additions and 629 deletions

View File

@ -235,7 +235,11 @@ Hereafter described is the default *plain* format, which uses MSB bit numbering.
**Port #8:** Battery voltage data (only if device has feature BATT)
byte 1-2: Battery or USB Voltage [mV], 0 if no battery probe
bytes 1-2: Battery or USB Voltage [mV], 0 if no battery probe
**Port #9:** Time/Date
bytes 1-4: board's local time/date in UNIX epoch (number of seconds that have elapsed since January 1, 1970 (midnight UTC/GMT), not counting leap seconds)
# Remote control
@ -358,6 +362,10 @@ Note: all settings are stored in NVRAM and will be reloaded when device starts.
Device answers with BME680 sensor data set on Port 7.
0x86 get time/date
Device answers with it's local time/date (UTC Unix epoch) on Port 9.
# License

View File

@ -1,15 +0,0 @@
#ifndef _CLOCKCONTROLLER_H
#define _CLOCKCONTROLLER_H
#include "globals.h"
#ifdef HAS_IF482
#include "if482.h"
#elif defined HAS_DCF77
#include "dcf77.h"
#endif
void clock_init(void);
void clock_loop(void *pvParameters);
#endif // _CLOCKCONTROLLER_H

View File

@ -5,15 +5,12 @@
#include "senddata.h"
#include "rcommand.h"
#include "spislave.h"
#include "rtctime.h"
#include <lmic.h>
#ifdef HAS_BME
#include "bme680mems.h"
#endif
void doHousekeeping(void);
uint64_t uptime(void);
void reset_counters(void);

View File

@ -6,14 +6,18 @@
#define DCF77_FRAME_SIZE (60)
#define DCF77_PULSE_LENGTH (100)
extern uint8_t DCFpulse[];
enum dcf_pulses { dcf_off, dcf_zero, dcf_one };
#ifdef DCF77_ACTIVE_LOW
enum dcf_pinstate { dcf_high, dcf_low };
#else
enum dcf_pinstate { dcf_low, dcf_high };
#endif
void DCF_Pulse(time_t t);
void IRAM_ATTR DCF77_Frame(time_t t);
void set_DCF77_pin(dcf_pinstate state);
uint8_t dec2bcd(uint8_t dec, uint8_t startpos, uint8_t endpos, uint8_t pArray[]);
enum DCF77_Pulses { dcf_Z, dcf_0, dcf_1 };
void DCF77_Pulse(time_t t, uint8_t const *DCFpulse);
uint8_t *IRAM_ATTR DCF77_Frame(time_t const t);
uint8_t IRAM_ATTR dec2bcd(uint8_t const dec, uint8_t const startpos, uint8_t const endpos,
uint8_t *DCFpulse);
uint8_t IRAM_ATTR setParityBit(uint8_t const p);
#endif

View File

@ -3,9 +3,9 @@
#include <U8x8lib.h>
#include "cyclic.h"
#include "rtctime.h"
extern uint8_t volatile DisplayState;
extern uint8_t DisplayState;
extern HAS_DISPLAY u8x8;
void init_display(const char *Productname, const char *Version);

View File

@ -7,6 +7,7 @@
// Time functions
#include <Time.h>
#include <Timezone.h>
#include <RtcDateTime.h>
// std::set for unified array functions
#include <set>
@ -96,6 +97,7 @@ typedef struct {
} bmeStatus_t;
enum sendprio_t { prio_low, prio_normal, prio_high };
enum timesource_t { _gps, _rtc, _lora, _unsynced };
extern std::set<uint16_t, std::less<uint16_t>, Mallocator<uint16_t>> macs;
extern std::array<uint64_t, 0xff>::iterator it;
@ -105,13 +107,15 @@ extern configData_t cfg; // current device configuration
extern char display_line6[], display_line7[]; // screen buffers
extern uint8_t volatile channel; // wifi channel rotation counter
extern uint16_t volatile macs_total, macs_wifi, macs_ble,
batt_voltage; // display values
extern bool volatile TimePulseTick;
extern hw_timer_t *sendCycle, *displaytimer;
batt_voltage; // display values
extern bool volatile TimePulseTick; // 1sec pps flag set by GPS or RTC
extern timesource_t timeSource;
extern hw_timer_t *sendCycle, *displaytimer, *clockCycle;
extern SemaphoreHandle_t I2Caccess, TimePulse;
extern TaskHandle_t irqHandlerTask, ClockTask;
extern TimerHandle_t WifiChanTimer;
extern Timezone myTZ;
extern time_t userUTCTime;
// application includes
#include "led.h"

View File

@ -2,15 +2,21 @@
#define _GPSREAD_H
#include <TinyGPS++.h> // library for parsing NMEA data
#include <RtcDateTime.h>
#include "timekeeper.h"
#ifdef GPS_I2C // Needed for reading from I2C Bus
#include <Wire.h>
#endif
#define NMEA_FRAME_SIZE 80 // NEMA has a maxium of 80 bytes per record
#define NMEA_BUFFERTIME 50 // 50ms safety time regardless
extern TinyGPSPlus gps; // Make TinyGPS++ instance globally availabe
extern gpsStatus_t
gps_status; // Make struct for storing gps data globally available
extern TaskHandle_t GpsTask;
extern TickType_t const gpsDelay_ticks; // time to NMEA arrival
int gps_init(void);
void gps_read(void);

View File

@ -2,6 +2,7 @@
#define _IF482_H
#include "globals.h"
#include "timekeeper.h"
#define IF482_FRAME_SIZE (17)
#define IF482_PULSE_LENGTH (1000)
@ -10,7 +11,5 @@ extern HardwareSerial IF482;
void IF482_Pulse(time_t t);
String IRAM_ATTR IF482_Frame(time_t tt);
TickType_t tx_Ticks(unsigned long baud, uint32_t config, int8_t rxPin,
int8_t txPins);
#endif

View File

@ -9,6 +9,7 @@
#include "globals.h"
#include "cyclic.h"
#include "senddata.h"
#include "timekeeper.h"
void irqHandler(void *pvParameters);
void IRAM_ATTR homeCycleIRQ();

View File

@ -3,6 +3,7 @@
#include "globals.h"
#include "rcommand.h"
#include "timekeeper.h"
// LMIC-Arduino LoRaWAN Stack
#include <lmic.h>
@ -10,17 +11,15 @@
#include <SPI.h>
#include <arduino_lmic_hal_boards.h>
#include "loraconf.h"
#include "rtctime.h"
// Needed for 24AA02E64, does not hurt anything if included and not used
#ifdef MCP_24AA02E64_I2C_ADDRESS
#include <Wire.h>
#endif
extern QueueHandle_t LoraSendQueue;
esp_err_t lora_stack_init();
void onEvent(ev_t ev);
void gen_lora_deveui(uint8_t *pdeveui);
void RevBytes(unsigned char *b, size_t c);
@ -36,7 +35,4 @@ void lora_queuereset(void);
void lora_housekeeping(void);
void user_request_network_time_callback(void *pVoidUserUTCTime,
int flagSuccess);
esp_err_t lora_stack_init();
#endif

View File

@ -17,6 +17,5 @@
#include "led.h"
#include "spislave.h"
#include "lorawan.h"
#include "rtctime.h"
#include "clockcontroller.h"
#include "timekeeper.h"
#endif

View File

@ -1,7 +1,8 @@
#ifndef _PAYLOAD_H_
#define _PAYLOAD_H_
// MyDevices CayenneLPP channels for dynamic sensor payload format
// MyDevices CayenneLPP 1.0 channels for Synamic sensor payload format
// all payload goes out on LoRa FPort 1
#if (PAYLOAD_ENCODER == 3)
#define LPP_GPS_CHANNEL 20
@ -19,7 +20,7 @@
#endif
// MyDevices CayenneLPP types
// MyDevices CayenneLPP 2.0 types for Packed Sensor Payload, not using channels, but different FPorts
#define LPP_GPS 136 // 3 byte lon/lat 0.0001 °, 3 bytes alt 0.01m
#define LPP_TEMPERATURE 103 // 2 bytes, 0.1°C signed MSB
#define LPP_DIGITAL_INPUT 0 // 1 byte
@ -49,6 +50,7 @@ public:
void addBME(bmeStatus_t value);
void addButton(uint8_t value);
void addSensor(uint8_t[]);
void addTime(time_t value);
#if PAYLOAD_ENCODER == 1 // format plain

View File

@ -2,27 +2,16 @@
#define _RTCTIME_H
#include "globals.h"
#include "timekeeper.h"
#include <Wire.h> // must be included here so that Arduino library object file references work
#include <RtcDS3231.h>
#ifdef HAS_GPS
#include "gpsread.h"
#endif
extern RtcDS3231<TwoWire> Rtc; // make RTC instance globally available
int rtc_init(void);
int set_rtctime(uint32_t t);
int set_rtctime(time_t t);
uint8_t rtc_init(void);
uint8_t set_rtctime(time_t t);
void sync_rtctime(void);
time_t get_rtctime(void);
float get_rtctemp(void);
void IRAM_ATTR CLOCKIRQ(void);
int timepulse_init(void);
void timepulse_start(void);
int sync_TimePulse(void);
int sync_SysTime(time_t);
int sync_SysTime(uint32_t t);
time_t best_time(void);
#endif // _RTCTIME_H

32
include/timekeeper.h Normal file
View File

@ -0,0 +1,32 @@
#ifndef _timekeeper_H
#define _timekeeper_H
#include "globals.h"
#include "rtctime.h"
#include "TimeLib.h"
#ifdef HAS_GPS
#include "gpsread.h"
#endif
#ifdef HAS_IF482
#include "if482.h"
#elif defined HAS_DCF77
#include "dcf77.h"
#endif
extern const char timeSetSymbols[];
void IRAM_ATTR CLOCKIRQ(void);
void clock_init(void);
void clock_loop(void *pvParameters);
void timepulse_start(void);
uint8_t timepulse_init(void);
time_t timeIsValid(time_t const t);
time_t timeProvider(void);
time_t compiledUTC(void);
time_t tmConvert(uint16_t YYYY, uint8_t MM, uint8_t DD, uint8_t hh, uint8_t mm,
uint8_t ss);
TickType_t tx_Ticks(uint32_t framesize, unsigned long baud, uint32_t config,
int8_t rxPin, int8_t txPins);
#endif // _timekeeper_H

1
lib/microTime Submodule

@ -0,0 +1 @@
Subproject commit 6d5b82c554590f49864cc44ce295ec91dcf1114e

View File

@ -6,7 +6,7 @@
; ---> SELECT TARGET PLATFORM HERE! <---
[platformio]
env_default = generic
;env_default = generic
;env_default = ebox
;env_default = eboxtube
;env_default = heltec
@ -16,7 +16,7 @@ env_default = generic
;env_default = ttgov21old
;env_default = ttgov21new
;env_default = ttgobeam
;env_default = ttgofox
env_default = ttgofox
;env_default = lopy
;env_default = lopy4
;env_default = fipy
@ -30,16 +30,16 @@ description = Paxcounter is a proof-of-concept ESP32 device for metering passeng
[common]
; for release_version use max. 10 chars total, use any decimal format like "a.b.c"
release_version = 1.7.31
release_version = 1.7.323
; DEBUG LEVEL: For production run set to 0, otherwise device will leak RAM while running!
; 0=None, 1=Error, 2=Warn, 3=Info, 4=Debug, 5=Verbose
debug_level = 0
debug_level = 4
; UPLOAD MODE: select esptool to flash via USB/UART, select custom to upload to cloud for OTA
upload_protocol = esptool
;upload_protocol = custom
extra_scripts = pre:build.py
keyfile = ota.conf
platform_espressif32 = espressif32@1.6.0
platform_espressif32 = espressif32@1.7.0
;platform_espressif32 = https://github.com/platformio/platform-espressif32.git#feature/stage
board_build.partitions = min_spiffs.csv
monitor_speed = 115200

View File

@ -1,7 +1,7 @@
#include "globals.h"
// Local logging tag
static const char TAG[] = "main";
static const char TAG[] = __FILE__;
#ifdef HAS_BATTERY_PROBE
esp_adc_cal_characteristics_t *adc_characs =
@ -48,7 +48,6 @@ uint16_t read_voltage() {
#ifdef BATT_FACTOR
voltage *= BATT_FACTOR;
#endif
ESP_LOGD(TAG, "Raw: %d / Voltage: %dmV", adc_reading, voltage);
return voltage;
#else
return 0;

View File

@ -3,7 +3,7 @@
#include "bme680mems.h"
// Local logging tag
static const char TAG[] = "main";
static const char TAG[] = __FILE__;
bmeStatus_t bme_status;
TaskHandle_t BmeTask;

View File

@ -4,7 +4,7 @@
#include "button.h"
// Local logging tag
static const char TAG[] = "main";
static const char TAG[] = __FILE__;
void readButton() {
ESP_LOGI(TAG, "Button pressed");

View File

@ -1,74 +0,0 @@
#include "clockcontroller.h"
#if defined HAS_IF482 || defined HAS_DCF77
#if defined HAS_DCF77 && defined HAS_IF482
#error You must define at most one of IF482 or DCF77!
#endif
// Local logging tag
static const char TAG[] = "main";
void clock_init(void) {
// setup clock output interface
#ifdef HAS_IF482
IF482.begin(HAS_IF482);
#elif defined HAS_DCF77
pinMode(HAS_DCF77, OUTPUT);
#endif
xTaskCreatePinnedToCore(clock_loop, // task function
"clockloop", // name of task
2048, // stack size of task
(void *)1, // task parameter
4, // priority of the task
&ClockTask, // task handle
0); // CPU core
assert(ClockTask); // has clock task started?
} // clock_init
void clock_loop(void *pvParameters) { // ClockTask
configASSERT(((uint32_t)pvParameters) == 1); // FreeRTOS check
TickType_t wakeTime;
time_t t;
#define t1(t) (t + DCF77_FRAME_SIZE + 1) // future time for next frame
// preload first DCF frame before start
#ifdef HAS_DCF77
DCF77_Frame(t1(best_time()));
#endif
// output time telegram for second following sec beginning with timepulse
for (;;) {
xTaskNotifyWait(0x00, ULONG_MAX, &wakeTime,
portMAX_DELAY); // wait for timepulse
if (timeStatus() == timeNotSet) // do we have valid time?
continue;
t = best_time(); // time to send to clock
#if defined HAS_IF482
IF482_Pulse(t + 1); // next second
#elif defined HAS_DCF77
if (second(t) == DCF77_FRAME_SIZE - 1) // moment to reload frame?
DCF77_Frame(t1(t)); // generate next frame
if (DCFpulse[DCF77_FRAME_SIZE] ==
minute(t1(t))) // do he have a recent frame?
DCF_Pulse(t + 1); // then output next second of current frame
#endif
} // for
} // clock_loop()
#endif // HAS_IF482 || defined HAS_DCF77

View File

@ -5,11 +5,7 @@
#include "cyclic.h"
// Local logging tag
static const char TAG[] = "main";
time_t userUTCTime; // Seconds since the UTC epoch
unsigned long nextLoraTimeSync = millis();
unsigned long nextGPSTimeSync = millis();
static const char TAG[] = __FILE__;
// do all housekeeping
void doHousekeeping() {
@ -21,36 +17,11 @@ void doHousekeeping() {
if (cfg.runmode == 1)
do_reset();
#ifdef HAS_SPI
spi_housekeeping();
#endif
#ifdef HAS_LORA
lora_housekeeping();
// do cyclic sync of systime with GPS timepulse, if present
#if defined HAS_GPS && defined TIME_SYNC_INTERVAL_GPS
if (millis() >= nextGPSTimeSync) {
nextGPSTimeSync = millis() + TIME_SYNC_INTERVAL_GPS *
60000; // set up next time sync period
// sync systime on next timepulse
if (sync_SysTime(get_gpstime())) {
//setSyncProvider(get_gpstime);
#ifdef HAS_RTC
set_rtctime(now()); // epoch time
#endif
ESP_LOGI(TAG, "GPS has set the system time");
} else
ESP_LOGI(TAG, "Unable to sync system time with GPS");
} // if
#endif
// do cyclic time sync with LORA network, if present
#if defined HAS_LORA && defined TIME_SYNC_INTERVAL_LORA
if (millis() >= nextLoraTimeSync) {
nextLoraTimeSync = millis() + TIME_SYNC_INTERVAL_LORA *
60000; // set up next time sync period
// Schedule a network time sync request at the next possible time
LMIC_requestNetworkTime(user_request_network_time_callback, &userUTCTime);
ESP_LOGI(TAG, "LORAWAN time request scheduled");
}
#endif
// task storage debugging //

View File

@ -14,19 +14,15 @@ https://github.com/udoklein/dcf77
#include "dcf77.h"
// Local logging tag
static const char TAG[] = "main";
static const char TAG[] = __FILE__;
// array of dcf pulses for one minute
uint8_t DCFpulse[DCF77_FRAME_SIZE + 1];
// triggered by 1 second timepulse to ticker out DCF signal
void DCF_Pulse(time_t t) {
uint8_t sec = second(t);
// triggered by second timepulse to ticker out DCF signal
void DCF77_Pulse(time_t t, uint8_t const *DCFpulse) {
TickType_t startTime = xTaskGetTickCount();
uint8_t sec = second(t);
ESP_LOGD(TAG, "DCF77 sec %d", sec);
ESP_LOGD (TAG, "DCF second %d", sec);
// induce 10 pulses
for (uint8_t pulse = 0; pulse <= 9; pulse++) {
@ -34,91 +30,84 @@ void DCF_Pulse(time_t t) {
switch (pulse) {
case 0: // start of second -> start of timeframe for logic signal
if (DCFpulse[sec] != dcf_off)
set_DCF77_pin(dcf_low);
else // 59th second reached, nothing more to do
return;
if (DCFpulse[sec] != dcf_Z)
digitalWrite(HAS_DCF77, dcf_low);
break;
case 1: // 100ms after start of second -> end of timeframe for logic 0
if (DCFpulse[sec] == dcf_zero)
set_DCF77_pin(dcf_high);
if (DCFpulse[sec] == dcf_0)
digitalWrite(HAS_DCF77, dcf_high);
break;
case 2: // 200ms after start of second -> end of timeframe for logic 1
set_DCF77_pin(dcf_high);
digitalWrite(HAS_DCF77, dcf_high);
break;
case 9: // 900ms after start -> last pulse
return;
break;
} // switch
// pulse pause
vTaskDelayUntil(&startTime, pdMS_TO_TICKS(DCF77_PULSE_LENGTH));
} // for
} // DCF_Pulse()
} // DCF77_Pulse()
void IRAM_ATTR DCF77_Frame(time_t tt) {
uint8_t *IRAM_ATTR DCF77_Frame(time_t const tt) {
// array of dcf pulses for one minute, secs 0..16 and 20 are never touched, so
// we keep them statically to avoid same recalculation every minute
static uint8_t DCFpulse[DCF77_FRAME_SIZE + 1] = {
dcf_0, dcf_0, dcf_0, dcf_0, dcf_0, dcf_0, dcf_0,
dcf_0, dcf_0, dcf_0, dcf_0, dcf_0, dcf_0, dcf_0,
dcf_0, dcf_0, dcf_0, dcf_0, dcf_0, dcf_0, dcf_1};
uint8_t Parity;
time_t t = myTZ.toLocal(tt); // convert to local time
ESP_LOGD(TAG, "DCF77 minute %d", minute(t));
// ENCODE DST CHANGE ANNOUNCEMENT (Sec 16)
DCFpulse[16] = dcf_0; // not yet implemented
// ENCODE HEAD
// secs 0..19 initialized with zeros
for (int n = 0; n <= 19; n++)
DCFpulse[n] = dcf_zero;
// secs 17..18: adjust for DayLightSaving
DCFpulse[18 - (myTZ.locIsDST(t) ? 1 : 0)] = dcf_one;
// sec 20: must be 1 to indicate time active
DCFpulse[20] = dcf_one;
// ENCODE DAYLIGHTSAVING (secs 17..18)
DCFpulse[17] = myTZ.locIsDST(t) ? dcf_1 : dcf_0;
DCFpulse[18] = myTZ.locIsDST(t) ? dcf_0 : dcf_1;
// ENCODE MINUTE (secs 21..28)
Parity = dec2bcd(minute(t), 21, 27, DCFpulse);
DCFpulse[28] = (Parity & 1) ? dcf_one : dcf_zero;
DCFpulse[28] = setParityBit(Parity);
// ENCODE HOUR (secs 29..35)
Parity = dec2bcd(hour(t), 29, 34, DCFpulse);
DCFpulse[35] = (Parity & 1) ? dcf_one : dcf_zero;
DCFpulse[35] = setParityBit(Parity);
// ENCODE DATE (secs 36..58)
Parity = dec2bcd(day(t), 36, 41, DCFpulse);
Parity += dec2bcd((weekday(t) - 1) ? (weekday(t) - 1) : 7, 42, 44, DCFpulse);
Parity += dec2bcd(month(t), 45, 49, DCFpulse);
Parity += dec2bcd(year(t) - 2000, 50, 57,
DCFpulse); // yes, we have a millenium 3000 bug here ;-)
DCFpulse[58] = (Parity & 1) ? dcf_one : dcf_zero;
Parity += dec2bcd(year(t) - 2000, 50, 57, DCFpulse);
DCFpulse[58] = setParityBit(Parity);
// ENCODE TAIL (sec 59)
DCFpulse[59] = dcf_off;
// !! missing code here for leap second !!
// ENCODE MARK (sec 59)
DCFpulse[59] = dcf_Z; // !! missing code here for leap second !!
// timestamp the frame with minute pointer
// timestamp this frame with it's minute
DCFpulse[60] = minute(t);
/*
// for debug: print the DCF77 frame buffer
char out[DCF77_FRAME_SIZE + 1];
uint8_t i;
for (i = 0; i < DCF77_FRAME_SIZE; i++) {
out[i] = DCFpulse[i] + '0'; // convert int digit to printable ascii
}
out[DCF77_FRAME_SIZE] = '\0'; // string termination char
ESP_LOGD(TAG, "DCF minute %d = %s", DCFpulse[DCF77_FRAME_SIZE], out);
*/
}
return DCFpulse;
} // DCF77_Frame()
// helper function to convert decimal to bcd digit
uint8_t IRAM_ATTR dec2bcd(uint8_t dec, uint8_t startpos, uint8_t endpos,
uint8_t pArray[]) {
uint8_t IRAM_ATTR dec2bcd(uint8_t const dec, uint8_t const startpos, uint8_t const endpos,
uint8_t *DCFpulse) {
uint8_t data = (dec < 10) ? dec : ((dec / 10) << 4) + (dec % 10);
uint8_t parity = 0;
for (uint8_t n = startpos; n <= endpos; n++) {
pArray[n] = (data & 1) ? dcf_one : dcf_zero;
for (uint8_t i = startpos; i <= endpos; i++) {
DCFpulse[i] = (data & 1) ? dcf_1 : dcf_0;
parity += (data & 1);
data >>= 1;
}
@ -126,24 +115,7 @@ uint8_t IRAM_ATTR dec2bcd(uint8_t dec, uint8_t startpos, uint8_t endpos,
return parity;
}
// helper function to switch GPIO line with DCF77 signal
void set_DCF77_pin(dcf_pinstate state) {
switch (state) {
case dcf_low:
#ifdef DCF77_ACTIVE_LOW
digitalWrite(HAS_DCF77, HIGH);
#else
digitalWrite(HAS_DCF77, LOW);
#endif
break;
case dcf_high:
#ifdef DCF77_ACTIVE_LOW
digitalWrite(HAS_DCF77, LOW);
#else
digitalWrite(HAS_DCF77, HIGH);
#endif
break;
} // switch
} // DCF77_pulse
// helper function to encode parity
uint8_t IRAM_ATTR setParityBit(uint8_t const p) { return ((p & 1) ? dcf_1 : dcf_0); }
#endif // HAS_DCF77

View File

@ -41,21 +41,11 @@ const char lora_datarate[] = {"1211100908078CNA1211109C8C7C"};
const char lora_datarate[] = {"121110090807FSNA"};
#endif
// time display symbols
#if defined HAS_GPS || defined HAS_RTC
const char timeNosyncSymbol = '?';
#if defined HAS_IF482
const char timesyncSymbol = '+';
#elif defined HAS_DCF77
const char timesyncSymbol = '*';
#endif
#endif
// helper arry for converting month values to text
const char *printmonth[] = {"xxx", "Jan", "Feb", "Mar", "Apr", "May", "Jun",
"Jul", "Aug", "Sep", "Oct", "Nov", "Dec"};
uint8_t volatile DisplayState = 0;
uint8_t DisplayState = 0;
// helper function, prints a hex key on display
void DisplayKey(const uint8_t *key, uint8_t len, bool lsb) {
@ -134,16 +124,14 @@ void init_display(const char *Productname, const char *Version) {
u8x8.printf(!cfg.rssilimit ? "RLIM:off " : "RLIM:%d", cfg.rssilimit);
I2C_MUTEX_UNLOCK(); // release i2c bus access
}
} // mutex
} // init_display
void refreshtheDisplay() {
uint8_t msgWaiting;
char timeSync, timeState;
char buff[16]; // 16 chars line buffer
time_t t;
char timeState, buff[16];
time_t t = myTZ.toLocal(now()); // note: call now() here *before* locking mutex!
// block i2c bus access
if (I2C_MUTEX_LOCK()) {
@ -155,8 +143,10 @@ void refreshtheDisplay() {
}
// if display is switched off we don't refresh it to relax cpu
if (!DisplayState)
if (!DisplayState) {
I2C_MUTEX_UNLOCK(); // release i2c bus access
return;
}
// update counter (lines 0-1)
snprintf(
@ -225,9 +215,7 @@ void refreshtheDisplay() {
// update LoRa status display (line 6)
u8x8.printf("%-16s", display_line6);
#else // we want a systime display instead LoRa status
t = myTZ.toLocal(best_time());
timeSync = (timeStatus() == timeSet) ? timesyncSymbol : timeNosyncSymbol;
timeState = TimePulseTick ? timeSync : ' ';
timeState = TimePulseTick ? ' ' : timeSetSymbols[timeSource];
TimePulseTick = false;
u8x8.printf("%02d:%02d:%02d%c %2d.%3s", hour(t), minute(t), second(t),
timeState, day(t), printmonth[month(t)]);
@ -249,8 +237,7 @@ void refreshtheDisplay() {
#endif // HAS_LORA
I2C_MUTEX_UNLOCK(); // release i2c bus access
}
} // mutex
} // refreshDisplay()
#endif // HAS_DISPLAY

View File

@ -3,7 +3,7 @@
#include "globals.h"
// Local logging tag
static const char TAG[] = "main";
static const char TAG[] = __FILE__;
TinyGPSPlus gps;
gpsStatus_t gps_status;
@ -11,6 +11,10 @@ TaskHandle_t GpsTask;
#ifdef GPS_SERIAL
HardwareSerial GPS_Serial(1); // use UART #1
TickType_t const gpsDelay_ticks = pdMS_TO_TICKS(1000 - NMEA_BUFFERTIME) -
tx_Ticks(NMEA_FRAME_SIZE, GPS_SERIAL);
#else
TickType_t const gpsDelay_ticks = pdMS_TO_TICKS(1000 - NMEA_BUFFERTIME);
#endif
// initialize and configure GPS
@ -23,6 +27,13 @@ int gps_init(void) {
return 0;
}
// set timeout for reading recent time from GPS
#ifdef GPS_SERIAL // serial GPS
#else // I2C GPS
#endif
#if defined GPS_SERIAL
GPS_Serial.begin(GPS_SERIAL);
ESP_LOGI(TAG, "Using serial GPS");
@ -73,32 +84,23 @@ void gps_read() {
gps.passedChecksum(), gps.failedChecksum(), gps.sentencesWithFix());
}
// helper function to convert gps date/time into time_t
time_t tmConvert_t(uint16_t YYYY, uint8_t MM, uint8_t DD, uint8_t hh,
uint8_t mm, uint8_t ss) {
tmElements_t tm;
tm.Year = YYYY - 1970; // note year argument is offset from 1970 in time.h
tm.Month = MM;
tm.Day = DD;
tm.Hour = hh;
tm.Minute = mm;
tm.Second = ss;
return makeTime(tm);
}
// function to fetch current time from gps
time_t get_gpstime(void) {
// !! never call now() or delay in this function, this would break this
// function to be used as SyncProvider for Time.h
time_t t = 0; // 0 effects calling SyncProvider() to not set time
// set time to wait for arrive next recent NMEA time record
static const uint32_t gpsDelay_ms = gpsDelay_ticks / portTICK_PERIOD_MS;
if ((gps.time.age() < 1500) && (gps.time.isValid())) {
// get current gps time
t = tmConvert_t(gps.date.year(), gps.date.month(), gps.date.day(),
time_t t = 0;
if ((gps.time.age() < gpsDelay_ms) && (gps.time.isValid()) && (gps.date.isValid())) {
ESP_LOGD(TAG, "GPS time age: %dms, second: %d, is valid: %s", gps.time.age(), gps.time.second(),
gps.time.isValid() ? "yes" : "no");
t = tmConvert(gps.date.year(), gps.date.month(), gps.date.day(),
gps.time.hour(), gps.time.minute(), gps.time.second());
}
return t;
}
return timeIsValid(t);
} // get_gpstime()
// GPS serial feed FreeRTos Task

View File

@ -25,20 +25,24 @@
#define GPS_SERIAL 9600, SERIAL_8N1, GPIO_NUM_12, GPIO_NUM_15 // UBlox NEO 6M
//#define GPS_INT GPIO_NUM_34 // 30ns accurary timepulse, to be external wired on pcb: NEO 6M Pin#3 -> GPIO34
// Settings for on board DS3231 RTC chip
//#define HAS_RTC MY_OLED_SDA, MY_OLED_SCL // SDA, SCL
//#define RTC_INT GPIO_NUM_13 // timepulse with accuracy +/- 2*e-6 [microseconds] = 0,1728sec / day
// enable only if device has these sensors, otherwise comment these lines
// BME680 sensor on I2C bus
//#define HAS_BME SDA, SCL
//#define BME_ADDR BME680_I2C_ADDR_PRIMARY // !! connect SDIO of BME680 to GND !!
#define HAS_BME SDA, SCL
#define BME_ADDR BME680_I2C_ADDR_PRIMARY // !! connect SDIO of BME680 to GND !!
// display (if connected)
//#define HAS_DISPLAY U8X8_SSD1306_128X64_NONAME_HW_I2C
//#define MY_OLED_SDA SDA
//#define MY_OLED_SCL SCL
//#define MY_OLED_RST U8X8_PIN_NONE
#define HAS_DISPLAY U8X8_SSD1306_128X64_NONAME_HW_I2C
#define MY_OLED_SDA SDA
#define MY_OLED_SCL SCL
#define MY_OLED_RST U8X8_PIN_NONE
//#define DISPLAY_FLIP 1 // use if display is rotated
// Settings for DCF77 interface
//#define HAS_DCF77 GPIO_NUM_13
#define HAS_DCF77 GPIO_NUM_13
// Settings for IF482 interface
//#define HAS_IF482 9600, SERIAL_7E1, GPIO_NUM_12, GPIO_NUM_14 // IF482 serial port parameters

View File

@ -28,12 +28,13 @@
//#define HAS_IF482 9600, SERIAL_7E1, GPIO_NUM_12, GPIO_NUM_14 // IF482 serial port parameters
// Settings for DCF77 interface
//#define HAS_DCF77 GPIO_NUM_14
//#define DCF77_ACTIVE_LOW 1
#define HAS_DCF77 GPIO_NUM_14
#define DCF77_ACTIVE_LOW 1
// Settings for external GPS chip
//#define HAS_GPS 1 // use on board GPS
//#define GPS_SERIAL 9600, SERIAL_8N1, GPIO_NUM_17, GPIO_NUM_16 // UBlox NEO 6M or 7M with default configuration
#define HAS_GPS 1 // use on board GPS
#define GPS_SERIAL 9600, SERIAL_8N1, GPIO_NUM_17, GPIO_NUM_16 // UBlox NEO 6M or 7M with default configuration
#define GPS_INT GPIO_NUM_13
// Pins for LORA chip SPI interface, reset line and interrupt lines
#define LORA_SCK (5)

View File

@ -82,23 +82,26 @@ not evaluated by model BU-190
#include "if482.h"
// Local logging tag
static const char TAG[] = "main";
static const char TAG[] = __FILE__;
HardwareSerial IF482(2); // use UART #2 (note: #1 may be in use for serial GPS)
// triggered by timepulse to ticker out DCF signal
// triggered by timepulse to send IF482 signal
void IF482_Pulse(time_t t) {
TickType_t startTime = xTaskGetTickCount();
static const TickType_t txDelay = pdMS_TO_TICKS(IF482_PULSE_LENGTH) - tx_Ticks(HAS_IF482);
vTaskDelayUntil(&startTime, txDelay);
IF482.print(IF482_Frame(t+1)); // note: if482 telegram for *next* second
static const TickType_t txDelay =
pdMS_TO_TICKS(IF482_PULSE_LENGTH - tx_Ticks(IF482_FRAME_SIZE, HAS_IF482));
//TickType_t startTime = xTaskGetTickCount();
//vTaskDelayUntil(&startTime, txDelay); // wait until moment to fire
vTaskDelay(txDelay); // wait until moment to fire
IF482.print(IF482_Frame(t + 1)); // note: if482 telegram for *next* second
}
String IRAM_ATTR IF482_Frame(time_t startTime) {
time_t t = myTZ.toLocal(startTime);
char mon, buf[14], out[IF482_FRAME_SIZE];
char mon, out[IF482_FRAME_SIZE];
switch (timeStatus()) { // indicates if time has been set and recently synced
case timeSet: // time is set and is synced
@ -113,24 +116,12 @@ String IRAM_ATTR IF482_Frame(time_t startTime) {
} // switch
// generate IF482 telegram
snprintf(buf, sizeof(buf), "%02u%02u%02u%1u%02u%02u%02u", year(t) - 2000,
month(t), day(t), weekday(t), hour(t), minute(t), second(t));
snprintf(out, sizeof(out), "O%cL%s\r", mon, buf);
snprintf(out, sizeof(out), "O%cL%02u%02u%02u%1u%02u%02u%02u\r", mon,
year(t) - 2000, month(t), day(t), weekday(t), hour(t), minute(t),
second(t));
ESP_LOGD(TAG, "IF482 = %s", out);
return out;
}
// calculate serial tx time from IF482 serial settings
TickType_t tx_Ticks(unsigned long baud, uint32_t config, int8_t rxPin,
int8_t txPins) {
uint32_t datenbits = ((config & 0x0c) >> 2) + 5;
uint32_t stopbits = ((config & 0x20) >> 5) + 1;
uint32_t tx_delay =
(2 + datenbits + stopbits) * IF482_FRAME_SIZE * 1000.0 / baud;
// +2 ms margin for the startbit and the clock's processing time
return pdMS_TO_TICKS(round(tx_delay));
}
#endif // HAS_IF482

View File

@ -1,7 +1,7 @@
#include "irqhandler.h"
// Local logging tag
static const char TAG[] = "main";
static const char TAG[] = __FILE__;
// irq handler task, handles all our application level interrupts
void irqHandler(void *pvParameters) {
@ -12,11 +12,10 @@ void irqHandler(void *pvParameters) {
// task remains in blocked state until it is notified by an irq
for (;;) {
xTaskNotifyWait(
0x00, // Don't clear any bits on entry
ULONG_MAX, // Clear all bits on exit
&InterruptStatus, // Receives the notification value
portMAX_DELAY); // wait forever
xTaskNotifyWait(0x00, // Don't clear any bits on entry
ULONG_MAX, // Clear all bits on exit
&InterruptStatus, // Receives the notification value
portMAX_DELAY); // wait forever
// button pressed?
#ifdef HAS_BUTTON
@ -31,8 +30,9 @@ void irqHandler(void *pvParameters) {
#endif
// are cyclic tasks due?
if (InterruptStatus & CYCLIC_IRQ)
if (InterruptStatus & CYCLIC_IRQ) {
doHousekeeping();
}
// is time to send the payload?
if (InterruptStatus & SENDCOUNTER_IRQ)

View File

@ -22,7 +22,7 @@
//#define LMIC_USE_INTERRUPTS
//time sync via LoRaWAN network, is not yet supported by TTN (LoRaWAN spec v1.0.3)
//#define LMIC_ENABLE_DeviceTimeReq 1
#define LMIC_ENABLE_DeviceTimeReq 1
// 16 μs per tick
// LMIC requires ticks to be 15.5μs - 100 μs long

View File

@ -358,12 +358,7 @@ void lora_send(osjob_t *job) {
lora_send);
}
#endif // HAS_LORA
esp_err_t lora_stack_init() {
#ifndef HAS_LORA
return ESP_OK; // continue main program
#else
assert(SEND_QUEUE_SIZE);
LoraSendQueue = xQueueCreate(SEND_QUEUE_SIZE, sizeof(MessageBuffer_t));
if (LoraSendQueue == 0) {
@ -401,12 +396,10 @@ esp_err_t lora_stack_init() {
}
return ESP_OK; // continue main program
#endif // HAS_LORA
}
void lora_enqueuedata(MessageBuffer_t *message, sendprio_t prio) {
// enqueue message in LORA send queue
#ifdef HAS_LORA
BaseType_t ret;
switch (prio) {
case prio_high:
@ -423,27 +416,26 @@ void lora_enqueuedata(MessageBuffer_t *message, sendprio_t prio) {
} else {
ESP_LOGW(TAG, "LORA sendqueue is full");
}
#endif
}
void lora_queuereset(void) {
#ifdef HAS_LORA
xQueueReset(LoraSendQueue);
#endif
}
void lora_queuereset(void) { xQueueReset(LoraSendQueue); }
void lora_housekeeping(void) {
#ifdef HAS_LORA
// ESP_LOGD(TAG, "loraloop %d bytes left",
// uxTaskGetStackHighWaterMark(LoraTask));
#endif
// ESP_LOGD(TAG, "loraloop %d bytes left",
// uxTaskGetStackHighWaterMark(LoraTask));
}
void user_request_network_time_callback(void *pVoidUserUTCTime,
int flagSuccess) {
#ifdef HAS_LORA
// Explicit conversion from void* to uint32_t* to avoid compiler errors
uint32_t *pUserUTCTime = (uint32_t *)pVoidUserUTCTime;
time_t *pUserUTCTime = (time_t *)pVoidUserUTCTime;
// A struct that will be populated by LMIC_getNetworkTimeReference.
// It contains the following fields:
// - tLocal: the value returned by os_GetTime() when the time
// request was sent to the gateway, and
// - tNetwork: the seconds between the GPS epoch and the time
// the gateway received the time request
lmic_time_reference_t lmicTimeReference;
if (flagSuccess != 1) {
@ -459,7 +451,8 @@ void user_request_network_time_callback(void *pVoidUserUTCTime,
}
// Update userUTCTime, considering the difference between the GPS and UTC
// epoch, and the leap seconds
// time, and the leap seconds
// !!! DANGER !!! This code will expire in next year with leap second
*pUserUTCTime = lmicTimeReference.tNetwork + 315964800;
// Current time, in ticks
ostime_t ticksNow = os_getTime();
@ -467,18 +460,17 @@ void user_request_network_time_callback(void *pVoidUserUTCTime,
ostime_t ticksRequestSent = lmicTimeReference.tLocal;
// Add the delay between the instant the time was transmitted and
// the current time
uint32_t requestDelaySec = osticks2ms(ticksNow - ticksRequestSent) / 1000;
time_t requestDelaySec = osticks2ms(ticksNow - ticksRequestSent) / 1000;
*pUserUTCTime += requestDelaySec;
// Update system time with time read from the network
if (sync_TimePulse()) { // wait for start of next second
if (sync_SysTime(*pUserUTCTime)) { // do we have a valid time?
#ifdef HAS_RTC
set_rtctime(now()); // epoch time
#endif
ESP_LOGI(TAG, "LORA has set the system time");
}
if (timeIsValid(*pUserUTCTime)) {
xSemaphoreTake(TimePulse, pdMS_TO_TICKS(1000)); // wait for pps
setTime(*pUserUTCTime + 1);
timeSource = _lora;
ESP_LOGI(TAG, "Received recent time from LoRa");
} else
ESP_LOGI(TAG, "Unable to sync system time with LORA");
#endif // HAS_LORA
ESP_LOGI(TAG, "Invalid time received from LoRa");
} // user_request_network_time_callback
#endif // HAS_LORA

View File

@ -7,7 +7,7 @@
#endif
// Local logging tag
static const char TAG[] = "main";
static const char TAG[] = __FILE__;
uint16_t salt;

View File

@ -27,11 +27,11 @@ Uused tasks and timers:
Task Core Prio Purpose
====================================================================================
clockloop 0 4 generates realtime telegrams for external clock
ledloop 0 3 blinks LEDs
spiloop 0 2 reads/writes data on spi interface
IDLE 0 0 ESP32 arduino scheduler -> runs wifi sniffer
clockloop 1 4 generates realtime telegrams for external clock
looptask 1 1 arduino core -> runs the LMIC LoRa stack
irqhandler 1 1 executes tasks triggered by hw irq, see table below
gpsloop 1 2 reads data from GPS via serial or i2c
@ -52,7 +52,7 @@ ESP32 hardware irq timers
RTC hardware timer (if present)
================================
triggers IF482 clock signal
triggers pps 1 sec impulse
*/
@ -65,14 +65,14 @@ uint8_t volatile channel = 0; // channel rotation counter
uint16_t volatile macs_total = 0, macs_wifi = 0, macs_ble = 0,
batt_voltage = 0; // globals for display
hw_timer_t *sendCycle = NULL, *homeCycle = NULL;
#ifdef HAS_DISPLAY
hw_timer_t *displaytimer = NULL;
#endif
hw_timer_t *sendCycle = NULL, *homeCycle = NULL, *clockCycle = NULL,
*displaytimer = NULL;
TaskHandle_t irqHandlerTask, ClockTask;
SemaphoreHandle_t I2Caccess, TimePulse;
bool volatile TimePulseTick = false;
time_t userUTCTime = 0;
timesource_t timeSource = _unsynced;
// container holding unique MAC address hashes with Memory Alloctor using PSRAM,
// if present
@ -81,13 +81,13 @@ std::set<uint16_t, std::less<uint16_t>, Mallocator<uint16_t>> macs;
// initialize payload encoder
PayloadConvert payload(PAYLOAD_BUFFER_SIZE);
// set Time Zone, fetch user setting from paxcounter.conf
// set Time Zone for user setting from paxcounter.conf
TimeChangeRule myDST = DAYLIGHT_TIME;
TimeChangeRule mySTD = STANDARD_TIME;
Timezone myTZ(myDST, mySTD);
// local Tag for logging
static const char TAG[] = "main";
static const char TAG[] = __FILE__;
void setup() {
@ -284,14 +284,14 @@ void setup() {
// initialize LoRa
#ifdef HAS_LORA
strcat_P(features, " LORA");
#endif
assert(lora_stack_init() == ESP_OK);
#endif
// initialize SPI
#ifdef HAS_SPI
strcat_P(features, " SPI");
#endif
assert(spi_init() == ESP_OK);
#endif
#ifdef VENDORFILTER
strcat_P(features, " OUIFLT");
@ -358,12 +358,10 @@ void setup() {
#endif
#endif
// start pps timepulse
ESP_LOGI(TAG, "Starting timepulse...");
if (timepulse_init()) // setup timepulse
timepulse_start(); // start pulse
else
ESP_LOGE(TAG, "No timepulse, systime will not be synced!");
// start pps timepulse and timekeepr
ESP_LOGI(TAG, "Starting Timekeeper...");
assert(timepulse_init()); // setup timepulse
timepulse_start();
// start wifi in monitor mode and start channel rotation timer
ESP_LOGI(TAG, "Starting Wifi...");
@ -416,30 +414,9 @@ void setup() {
#endif
#endif // HAS_BUTTON
#ifdef HAS_GPS
// sync systime on next timepulse
ESP_LOGI(TAG, "GPS is setting system time");
if (sync_SysTime(get_gpstime())) {
//setSyncProvider(get_gpstime); // reset sync cycle on top of second
//setSyncInterval(TIME_SYNC_INTERVAL_GPS * 60);
// calibrate RTC
#ifdef HAS_RTC
set_rtctime(now()); // epoch time
#endif
} else
ESP_LOGI(TAG, "Unable to sync system time with GPS");
#endif // HAS_GPS
// initialize systime from timesource
#ifdef HAS_RTC
// sync systime on next timepulse
ESP_LOGI(TAG, "RTC is setting system time");
if (sync_SysTime(get_rtctime())) {
//setSyncProvider(get_rtctime); // reset sync cycle on top of second
//setSyncInterval(TIME_SYNC_INTERVAL_RTC * 60);
} else
ESP_LOGI(TAG, "Unable to sync system time with RTC");
#endif // HAS_RTC
// set time source
setSyncInterval(TIME_SYNC_INTERVAL * 60);
setSyncProvider(&timeProvider);
#if defined HAS_IF482 || defined HAS_DCF77
ESP_LOGI(TAG, "Starting Clock Controller...");

View File

@ -31,7 +31,7 @@ int volatile contentLength = 0;
bool volatile isValidContentType = false;
// Local logging tag
static const char TAG[] = "main";
static const char TAG[] = __FILE__;
// helper function to extract header value from header
inline String getHeaderValue(String header, String headerName) {

View File

@ -11,7 +11,7 @@
// Payload send cycle and encoding
#define SEND_SECS 30 // payload send cycle [seconds/2] -> 60 sec.
#define PAYLOAD_ENCODER 2 // payload encoder: 1=Plain, 2=Packed, 3=CayenneLPP dynamic, 4=CayenneLPP packed
#define PAYLOAD_ENCODER 2 // payload encoder: 1=Plain, 2=Packed, 3=Cayenne LPP dynamic, 4=Cayenne LPP packed
// Set this to include BLE counting and vendor filter functions
#define VENDORFILTER 1 // comment out if you want to count things, not people
@ -49,28 +49,12 @@
#define MAXLORARETRY 500 // maximum count of TX retries if LoRa busy
#define SEND_QUEUE_SIZE 10 // maximum number of messages in payload send queue [1 = no queue]
// Ports on which the device sends and listenes on LoRaWAN and SPI
#define COUNTERPORT 1 // Port on which device sends counts
#define RCMDPORT 2 // Port on which device listenes for remote commands
#define STATUSPORT 2 // Port on which device sends remote command results
#define CONFIGPORT 3 // Port on which device sends config query results
#define GPSPORT 4 // Port on which device sends gps data
#define BUTTONPORT 5 // Port on which device sends button pressed signal
#define LPP1PORT 1 // Port for Cayenne LPP 1.0 dynamic sensor encoding
#define LPP2PORT 2 // Port for Cayenne LPP 2.0 packed sensor encoding
#define BEACONPORT 6 // Port on which device sends beacon alarms
#define BMEPORT 7 // Port on which device sends BME680 sensor data
#define BATTPORT 8 // Port on which device sends battery voltage data
#define SENSOR1PORT 10 // Port on which device sends User sensor #1 data
#define SENSOR2PORT 11 // Port on which device sends User sensor #2 data
#define SENSOR3PORT 12 // Port on which device sends User sensor #3 data
// Some hardware settings
// Hardware settings
#define RGBLUMINOSITY 30 // RGB LED luminosity [default = 30%]
#define DISPLAYREFRESH_MS 40 // OLED refresh cycle in ms [default = 40] -> 1000/40 = 25 frames per second
#define HOMECYCLE 30 // house keeping cycle in seconds [default = 30 secs]
// Settings for BME680 environmental sensor (if present)
// Settings for BME680 environmental sensor
#define BME_TEMP_OFFSET 5.0f // Offset sensor on chip temp <-> ambient temp [default = 5°C]
#define STATE_SAVE_PERIOD UINT32_C(360 * 60 * 1000) // update every 360 minutes = 4 times a day
@ -81,14 +65,37 @@
#define OTA_MIN_BATT 3600 // minimum battery level for OTA [millivolt]
#define RESPONSE_TIMEOUT_MS 60000 // firmware binary server connection timeout [milliseconds]
// settings for syncing time of node and external time sources
#define TIME_SYNC_INTERVAL_GPS 5 // sync time each .. minutes from GPS [default = 5], comment out means off
#define TIME_SYNC_INTERVAL_RTC 60 // sync time each .. minutes from RTC [default = 60], comment out means off
//#define TIME_SYNC_INTERVAL_LORA 60 // sync time each .. minutes from LORA network [default = 60], comment out means off
// settings for syncing time of node with external time source
#define TIME_SYNC_INTERVAL 2 // sync time attempt each .. minutes from time source (GPS/LORA/RTC) [default = 60], comment out means off
//#define TIME_SYNC_LORA 1 // use LORA network as time source, comment out means off [default = off]
// time zone, see https://github.com/JChristensen/Timezone/blob/master/examples/WorldClock/WorldClock.ino
#define DAYLIGHT_TIME {"CEST", Last, Sun, Mar, 2, 120} // Central European Summer Time
#define STANDARD_TIME {"CET ", Last, Sun, Oct, 3, 60} // Central European Standard Time
// Ports on which the device sends and listenes on LoRaWAN and SPI
#define COUNTERPORT 1 // counts
#define RCMDPORT 2 // remote commands
#define STATUSPORT 2 // remote command results
#define CONFIGPORT 3 // config query results
#define GPSPORT 4 // gps
#define BUTTONPORT 5 // button pressed signal
#define BEACONPORT 6 // beacon alarms
#define BMEPORT 7 // BME680 sensor
#define BATTPORT 8 // battery voltage
#define TIMEPORT 9 // time
#define SENSOR1PORT 10 // user sensor #1
#define SENSOR2PORT 11 // user sensor #2
#define SENSOR3PORT 12 // user sensor #3
// Cayenne LPP Ports, see https://community.mydevices.com/t/cayenne-lpp-2-0/7510
#define CAYENNE_LPP1 1 // dynamic sensor payload (LPP 1.0)
#define CAYENNE_LPP2 2 // packed sensor payload (LPP 2.0)
#define CAYENNE_GPS 3 // full scale GPS payload
#define CAYENNE_ACTUATOR 10 // actuator commands
#define CAYENNE_DEVICECONFIG 11 // device period configuration
#define CAYENNE_SENSORREAD 13 // sensor period configuration
#define CAYENNE_SENSORENABLE 14 // sensor enable configuration
// LMIC settings
// moved to src/lmic_config.h
// -> in src/lmic_config.h

View File

@ -126,6 +126,14 @@ void PayloadConvert::addButton(uint8_t value) {
#endif
}
void PayloadConvert::addTime(time_t value) {
uint32_t time = (uint32_t)value;
buffer[cursor++] = (byte)((time & 0xFF000000) >> 24);
buffer[cursor++] = (byte)((time & 0x00FF0000) >> 16);
buffer[cursor++] = (byte)((time & 0x0000FF00) >> 8);
buffer[cursor++] = (byte)((time & 0x000000FF));
}
/* ---------------- packed format with LoRa serialization Encoder ----------
*/
// derived from
@ -133,7 +141,9 @@ void PayloadConvert::addButton(uint8_t value) {
#elif PAYLOAD_ENCODER == 2
void PayloadConvert::addCount(uint16_t value, uint8_t snifftype) { writeUint16(value); }
void PayloadConvert::addCount(uint16_t value, uint8_t snifftype) {
writeUint16(value);
}
void PayloadConvert::addAlarm(int8_t rssi, uint8_t msg) {
writeUint8(rssi);
@ -208,6 +218,11 @@ void PayloadConvert::addButton(uint8_t value) {
#endif
}
void PayloadConvert::addTime(time_t value) {
uint32_t time = (uint32_t)value;
writeUint32(time);
}
void PayloadConvert::intToBytes(uint8_t pos, int32_t i, uint8_t byteSize) {
for (uint8_t x = 0; x < byteSize; x++) {
buffer[x + pos] = (byte)(i >> (x * 8));
@ -275,14 +290,16 @@ void PayloadConvert::writeBitmap(bool a, bool b, bool c, bool d, bool e, bool f,
}
/* ---------------- Cayenne LPP 2.0 format ---------- */
// see specs http://community.mydevices.com/t/cayenne-lpp-2-0/7510
// see specs
// http://community.mydevices.com/t/cayenne-lpp-2-0/7510 (LPP 2.0)
// https://github.com/myDevicesIoT/cayenne-docs/blob/master/docs/LORA.md (LPP 1.0)
// PAYLOAD_ENCODER == 3 -> Dynamic Sensor Payload, using channels -> FPort 1
// PAYLOAD_ENCODER == 4 -> Packed Sensor Payload, not using channels -> FPort 2
#elif (PAYLOAD_ENCODER == 3 || PAYLOAD_ENCODER == 4)
void PayloadConvert::addCount(uint16_t value, uint8_t snifftype) {
switch(snifftype) {
switch (snifftype) {
case MAC_SNIFF_WIFI:
#if (PAYLOAD_ENCODER == 3)
buffer[cursor++] = LPP_COUNT_WIFI_CHANNEL;
@ -436,6 +453,24 @@ void PayloadConvert::addButton(uint8_t value) {
#endif // HAS_BUTTON
}
void PayloadConvert::addTime(time_t value) {
#if (PAYLOAD_ENCODER == 4)
uint32_t t = (uint32_t)value;
uint32_t tx_period = (uint32_t)SEND_SECS * 2;
buffer[cursor++] = 0x03; // set config mask to UTCTime + TXPeriod
// UTCTime in seconds
buffer[cursor++] = (byte)((t & 0xFF000000) >> 24);
buffer[cursor++] = (byte)((t & 0x00FF0000) >> 16);
buffer[cursor++] = (byte)((t & 0x0000FF00) >> 8);
buffer[cursor++] = (byte)((t & 0x000000FF));
// TXPeriod in seconds
buffer[cursor++] = (byte)((tx_period & 0xFF000000) >> 24);
buffer[cursor++] = (byte)((tx_period & 0x00FF0000) >> 16);
buffer[cursor++] = (byte)((tx_period & 0x0000FF00) >> 8);
buffer[cursor++] = (byte)((tx_period & 0x000000FF));
#endif
}
#else
#error No valid payload converter defined!
#endif

View File

@ -3,7 +3,7 @@
#include "rcommand.h"
// Local logging tag
static const char TAG[] = "main";
static const char TAG[] = __FILE__;
// helper function
void do_reset() {
@ -68,7 +68,7 @@ void set_sendcycle(uint8_t val[]) {
void set_wifichancycle(uint8_t val[]) {
cfg.wifichancycle = val[0];
// update Wifi channel rotation timer period
xTimerChangePeriod(WifiChanTimer, pdMS_TO_TICKS(cfg.wifichancycle * 10), 100 );
xTimerChangePeriod(WifiChanTimer, pdMS_TO_TICKS(cfg.wifichancycle * 10), 100);
ESP_LOGI(TAG,
"Remote command: set Wifi channel switch interval to %.1f seconds",
@ -244,9 +244,8 @@ void get_status(uint8_t val[]) {
uint16_t voltage = 0;
#endif
payload.reset();
payload.addStatus(voltage, uptime() / 1000, temperatureRead(),
getFreeRAM(), rtc_get_reset_reason(0),
rtc_get_reset_reason(1));
payload.addStatus(voltage, uptime() / 1000, temperatureRead(), getFreeRAM(),
rtc_get_reset_reason(0), rtc_get_reset_reason(1));
SendPayload(STATUSPORT, prio_high);
};
@ -273,6 +272,13 @@ void get_bme(uint8_t val[]) {
#endif
};
void get_time(uint8_t val[]) {
ESP_LOGI(TAG, "Remote command: get time");
payload.reset();
payload.addTime(now());
SendPayload(TIMEPORT, prio_high);
};
// assign previously defined functions to set of numeric remote commands
// format: opcode, function, #bytes params,
// flag (true = do make settings persistent / false = don't)
@ -289,7 +295,7 @@ cmd_t table[] = {
{0x11, set_monitor, 1, true}, {0x12, set_beacon, 7, false},
{0x13, set_sensor, 2, true}, {0x80, get_config, 0, false},
{0x81, get_status, 0, false}, {0x84, get_gps, 0, false},
{0x85, get_bme, 0, false},
{0x85, get_bme, 0, false}, {0x86, get_time, 0, false},
};
const uint8_t cmdtablesize =

View File

@ -1,214 +1,81 @@
#include "rtctime.h"
// Local logging tag
static const char TAG[] = "main";
hw_timer_t *clockCycle = NULL;
// helper function to setup a pulse per second for time synchronisation
int timepulse_init() {
// use time pulse from GPS as time base with fixed 1Hz frequency
#ifdef GPS_INT
// setup external interupt for active low RTC INT pin
pinMode(GPS_INT, INPUT_PULLDOWN);
// setup external rtc 1Hz clock as pulse per second clock
ESP_LOGI(TAG, "Time base: external (GPS)");
return 1; // success
// use pulse from on board RTC chip as time base with fixed frequency
#elif defined RTC_INT
// setup external interupt for active low RTC INT pin
pinMode(RTC_INT, INPUT_PULLUP);
// setup external rtc 1Hz clock as pulse per second clock
if (I2C_MUTEX_LOCK()) {
Rtc.SetSquareWavePinClockFrequency(DS3231SquareWaveClock_1Hz);
Rtc.SetSquareWavePin(DS3231SquareWavePin_ModeClock);
I2C_MUTEX_UNLOCK();
ESP_LOGI(TAG, "Time base: external (RTC)");
return 1; // success
} else {
ESP_LOGE(TAG, "I2c bus busy - RTC initialization error");
return 0; // failure
}
return 1; // success
#else
// use ESP32 hardware timer as time base with adjustable frequency
clockCycle = timerBegin(1, 8000, true); // set 80 MHz prescaler to 1/10000 sec
timerAlarmWrite(clockCycle, 10000, true); // 1000ms
ESP_LOGI(TAG, "Time base: internal (ESP32 hardware timer)");
return 1; // success
#endif
} // timepulse_init
void timepulse_start(void) {
#ifdef GPS_INT // start external clock gps pps line
attachInterrupt(digitalPinToInterrupt(GPS_INT), CLOCKIRQ, RISING);
#elif defined RTC_INT // start external clock rtc
attachInterrupt(digitalPinToInterrupt(RTC_INT), CLOCKIRQ, FALLING);
#else // start internal clock esp32 hardware timer
timerAttachInterrupt(clockCycle, &CLOCKIRQ, true);
timerAlarmEnable(clockCycle);
#endif
}
// interrupt service routine triggered by either pps or esp32 hardware timer
void IRAM_ATTR CLOCKIRQ(void) {
if (ClockTask != NULL)
xTaskNotifyFromISR(ClockTask, xTaskGetTickCountFromISR(), eSetBits, NULL);
#if defined GPS_INT || defined RTC_INT
xSemaphoreGiveFromISR(TimePulse, NULL);
TimePulseTick = !TimePulseTick; // flip ticker
#endif
portYIELD_FROM_ISR();
}
// helper function to sync systime on start of next second
int sync_SysTime(time_t t) {
if (sync_TimePulse() && (t)) { // wait for start of next second by timepulse
setTime(t + 1);
ESP_LOGD(TAG, "Systime synced on second");
return 1; // success
} else
return 0; // failure
}
int sync_SysTime(uint32_t t) { // t is epoch seconds starting 1.1.1970
return sync_SysTime(static_cast<time_t>(t));
}
// helper function to sync moment on timepulse
int sync_TimePulse(void) {
// sync on top of next second by timepulse
if (xSemaphoreTake(TimePulse, pdMS_TO_TICKS(1100)) == pdTRUE) {
return 1;
} // success
else
ESP_LOGW(TAG, "Missing timepulse, time not synced");
return 0; // failure
}
// helper function to fetch current second from most precise time source
time_t best_time(void) {
time_t t;
#ifdef HAS_GPS // gps is our primary time source if present
t = get_gpstime();
if (t) // did we get a valid time?
return t;
#endif
/*
// Reading RTC time from chip take too long on i2c bus, causes jitter
#ifdef HAS_RTC // rtc is our secondary time source if present
t = get_rtctime();
if (t)
return t;
#endif
*/
// else we use systime as fallback source
return now();
}
static const char TAG[] = __FILE__;
#ifdef HAS_RTC // we have hardware RTC
RtcDS3231<TwoWire> Rtc(Wire); // RTC hardware i2c interface
// initialize RTC
int rtc_init(void) {
uint8_t rtc_init(void) {
// return = 0 -> error / return = 1 -> success
// block i2c bus access
if (I2C_MUTEX_LOCK()) {
if (I2C_MUTEX_LOCK()) { // block i2c bus access
Wire.begin(HAS_RTC);
Rtc.Begin();
RtcDateTime compiled = RtcDateTime(__DATE__, __TIME__);
if (!Rtc.IsDateTimeValid()) {
ESP_LOGW(TAG,
"RTC has no valid RTC date/time, setting to compilation date");
Rtc.SetDateTime(compiled);
}
// configure RTC chip
Rtc.Enable32kHzPin(false);
Rtc.SetSquareWavePin(DS3231SquareWavePin_ModeNone);
if (!Rtc.GetIsRunning()) {
ESP_LOGI(TAG, "RTC not running, starting now");
Rtc.SetIsRunning(true);
}
RtcDateTime now = Rtc.GetDateTime();
// If you want to initialize a fresh RTC to compiled time, use this code
/*
RtcDateTime tt = Rtc.GetDateTime();
time_t t = tt.Epoch32Time(); // sec2000 -> epoch
if (now < compiled) {
ESP_LOGI(TAG, "RTC date/time is older than compilation date, updating");
Rtc.SetDateTime(compiled);
}
// configure RTC chip
Rtc.Enable32kHzPin(false);
Rtc.SetSquareWavePin(DS3231SquareWavePin_ModeNone);
if (!Rtc.IsDateTimeValid() || !timeIsValid(t)) {
ESP_LOGW(TAG, "RTC has no recent time, setting to compilation date");
Rtc.SetDateTime(
RtcDateTime(compiledUTC() - SECS_YR_2000)); // epoch -> sec2000
}
*/
I2C_MUTEX_UNLOCK(); // release i2c bus access
ESP_LOGI(TAG, "RTC initialized");
return 1; // success
} else {
ESP_LOGE(TAG, "I2c bus busy - RTC initialization error");
goto error;
ESP_LOGE(TAG, "RTC initialization error, I2C bus busy");
return 0; // failure
}
I2C_MUTEX_UNLOCK(); // release i2c bus access
ESP_LOGI(TAG, "RTC initialized");
return 1;
error:
I2C_MUTEX_UNLOCK(); // release i2c bus access
return 0;
} // rtc_init()
int set_rtctime(time_t t) { // t is seconds epoch time starting 1.1.1970
uint8_t set_rtctime(time_t t) { // t is UTC in seconds epoch time
if (I2C_MUTEX_LOCK()) {
Rtc.SetDateTime(RtcDateTime(t));
I2C_MUTEX_UNLOCK(); // release i2c bus access
ESP_LOGI(TAG, "RTC calibrated");
Rtc.SetDateTime(RtcDateTime(t - SECS_YR_2000)); // epoch -> sec2000
I2C_MUTEX_UNLOCK();
ESP_LOGI(TAG, "RTC time synced");
return 1; // success
}
ESP_LOGE(TAG, "RTC set time failure");
return 0; // failure
} else {
ESP_LOGE(TAG, "RTC set time failure");
return 0;
} // failure
} // set_rtctime()
int set_rtctime(uint32_t t) { // t is epoch seconds starting 1.1.1970
return set_rtctime(static_cast<time_t>(t));
// set_rtctime()
}
time_t get_rtctime(void) {
// !! never call now() or delay in this function, this would break this
// function to be used as SyncProvider for Time.h
time_t t = 0; // 0 effects calling SyncProvider() to not set time
// block i2c bus access
time_t t = 0;
if (I2C_MUTEX_LOCK()) {
if (Rtc.IsDateTimeValid()) {
if (Rtc.IsDateTimeValid() && Rtc.GetIsRunning()) {
RtcDateTime tt = Rtc.GetDateTime();
t = tt.Epoch32Time();
t = tt.Epoch32Time(); // sec2000 -> epoch
}
I2C_MUTEX_UNLOCK(); // release i2c bus access
I2C_MUTEX_UNLOCK();
}
return t;
return timeIsValid(t);
} // get_rtctime()
float get_rtctemp(void) {
// block i2c bus access
if (I2C_MUTEX_LOCK()) {
RtcTemperature temp = Rtc.GetTemperature();
I2C_MUTEX_UNLOCK(); // release i2c bus access
I2C_MUTEX_UNLOCK();
return temp.AsFloatDegC();
} // while
}
return 0;
} // get_rtctemp()

View File

@ -8,24 +8,39 @@ void SendPayload(uint8_t port, sendprio_t prio) {
SendBuffer.MessageSize = payload.getSize();
switch (PAYLOAD_ENCODER) {
case 1:
case 2:
case 1: // plain -> no mapping
case 2: // packed -> no mapping
SendBuffer.MessagePort = port;
break;
case 3:
SendBuffer.MessagePort = LPP1PORT;
case 3: // Cayenne LPP dynamic -> all payload goes out on same port
SendBuffer.MessagePort = CAYENNE_LPP1;
break;
case 4:
SendBuffer.MessagePort = LPP2PORT;
case 4: // Cayenne LPP packed -> we need to map some paxcounter ports
SendBuffer.MessagePort = CAYENNE_LPP2;
switch (SendBuffer.MessagePort) {
case COUNTERPORT:
SendBuffer.MessagePort = CAYENNE_LPP2;
break;
case RCMDPORT:
SendBuffer.MessagePort = CAYENNE_ACTUATOR;
break;
case TIMEPORT:
SendBuffer.MessagePort = CAYENNE_DEVICECONFIG;
break;
}
break;
default:
SendBuffer.MessagePort = port;
}
memcpy(SendBuffer.Message, payload.getBuffer(), payload.getSize());
// enqueue message in device's send queues
// enqueue message in device's send queues
#ifdef HAS_LORA
lora_enqueuedata(&SendBuffer, prio);
#endif
#ifdef HAS_SPI
spi_enqueuedata(&SendBuffer, prio);
#endif
} // SendPayload
@ -119,6 +134,10 @@ void sendCounter() {
} // sendCounter()
void flushQueues() {
#ifdef HAS_LORA
lora_queuereset();
#endif
#ifdef HAS_SPI
spi_queuereset();
#endif
}

View File

@ -2,7 +2,7 @@
#include "globals.h"
// Local logging tag
static const char TAG[] = "main";
static const char TAG[] = __FILE__;
#define SENSORBUFFER \
10 // max. size of user sensor data buffer in bytes [default=20]

View File

@ -22,6 +22,8 @@ licenses. Refer to LICENSE.txt file in repository for more details.
*/
#ifdef HAS_SPI
#include "spislave.h"
#include <driver/spi_slave.h>
@ -102,9 +104,6 @@ void spi_slave_task(void *param) {
}
esp_err_t spi_init() {
#ifndef HAS_SPI
return ESP_OK;
#else
assert(SEND_QUEUE_SIZE);
SPISendQueue = xQueueCreate(SEND_QUEUE_SIZE, sizeof(MessageBuffer_t));
if (SPISendQueue == 0) {
@ -146,13 +145,10 @@ esp_err_t spi_init() {
}
return ret;
#endif
}
void spi_enqueuedata(MessageBuffer_t *message, sendprio_t prio) {
// enqueue message in SPI send queue
#ifdef HAS_SPI
BaseType_t ret;
switch (prio) {
case prio_high:
@ -170,17 +166,12 @@ void spi_enqueuedata(MessageBuffer_t *message, sendprio_t prio) {
} else {
ESP_LOGW(TAG, "SPI sendqueue is full");
}
#endif
}
void spi_queuereset(void) {
#ifdef HAS_SPI
xQueueReset(SPISendQueue);
#endif
}
void spi_queuereset(void) { xQueueReset(SPISendQueue); }
void spi_housekeeping(void) {
#ifdef HAS_SPI
ESP_LOGD(TAG, "spiloop %d bytes left", uxTaskGetStackHighWaterMark(spiTask));
#endif
}
#endif // HAS_SPI

231
src/timekeeper.cpp Normal file
View File

@ -0,0 +1,231 @@
#include "timekeeper.h"
// Local logging tag
static const char TAG[] = __FILE__;
// symbol to display current time source
const char timeSetSymbols[] = {'G', 'R', 'L', '?'};
getExternalTime TimeSourcePtr; // pointer to time source function
time_t timeProvider(void) {
ESP_LOGD(TAG, "time synched");
time_t t = 0;
#ifdef HAS_GPS
// xSemaphoreTake(TimePulse, pdMS_TO_TICKS(1100)); // wait for pps
t = get_gpstime(); // fetch recent time from last NEMA record
if (t) {
// t++; // last NMEA record concerns past second, so we add one
#ifdef HAS_RTC
set_rtctime(t); // calibrate RTC
#endif
timeSource = _gps;
return t;
}
#endif
// no GPS -> fallback to RTC time while trying lora sync
#ifdef HAS_RTC
t = get_rtctime();
if (t) {
timeSource = _rtc;
}
#endif
// kick off asychron lora sync if we have
#if defined HAS_LORA && defined TIME_SYNC_LORA
LMIC_requestNetworkTime(user_request_network_time_callback, &userUTCTime);
#endif
if (!t)
timeSource = _unsynced;
return t;
} // timeProvider()
// helper function to setup a pulse per second for time synchronisation
uint8_t timepulse_init() {
// use time pulse from GPS as time base with fixed 1Hz frequency
#ifdef GPS_INT
// setup external interupt pin for rising edge GPS INT
pinMode(GPS_INT, INPUT_PULLDOWN);
// setup external rtc 1Hz clock as pulse per second clock
ESP_LOGI(TAG, "Timepulse: external (GPS)");
return 1; // success
// use pulse from on board RTC chip as time base with fixed frequency
#elif defined RTC_INT
// setup external interupt pin for falling edge RTC INT
pinMode(RTC_INT, INPUT_PULLUP);
// setup external rtc 1Hz clock as pulse per second clock
if (I2C_MUTEX_LOCK()) {
Rtc.SetSquareWavePinClockFrequency(DS3231SquareWaveClock_1Hz);
Rtc.SetSquareWavePin(DS3231SquareWavePin_ModeClock);
I2C_MUTEX_UNLOCK();
ESP_LOGI(TAG, "Timepulse: external (RTC)");
return 1; // success
} else {
ESP_LOGE(TAG, "RTC initialization error, I2C bus busy");
return 0; // failure
}
return 1; // success
#else
// use ESP32 hardware timer as time base with adjustable frequency
clockCycle = timerBegin(1, 8000, true); // set 80 MHz prescaler to 1/10000 sec
timerAlarmWrite(clockCycle, 10000, true); // 1000ms
ESP_LOGI(TAG, "Timepulse: internal (ESP32 hardware timer)");
return 1; // success
#endif
} // timepulse_init
void timepulse_start(void) {
#ifdef GPS_INT // start external clock gps pps line
attachInterrupt(digitalPinToInterrupt(GPS_INT), CLOCKIRQ, RISING);
#elif defined RTC_INT // start external clock rtc
attachInterrupt(digitalPinToInterrupt(RTC_INT), CLOCKIRQ, FALLING);
#else // start internal clock esp32 hardware timer
timerAttachInterrupt(clockCycle, &CLOCKIRQ, true);
timerAlarmEnable(clockCycle);
#endif
}
// interrupt service routine triggered by either pps or esp32 hardware timer
void IRAM_ATTR CLOCKIRQ(void) {
SyncToPPS(); // calibrate systime from Time.h
if (ClockTask != NULL)
xTaskNotifyFromISR(ClockTask, uint32_t(now()), eSetBits, NULL);
#if defined GPS_INT || defined RTC_INT
xSemaphoreGiveFromISR(TimePulse, NULL);
TimePulseTick = !TimePulseTick; // flip ticker
#endif
portYIELD_FROM_ISR();
}
// helper function to check plausibility of a time
time_t timeIsValid(time_t const t) {
// is it a time in the past? we use compile date to guess
return (t >= compiledUTC() ? t : 0);
}
// helper function to convert compile time to UTC time
time_t compiledUTC(void) {
static time_t t = myTZ.toUTC(RtcDateTime(__DATE__, __TIME__).Epoch32Time());
return t;
}
// helper function to convert gps date/time into time_t
time_t tmConvert(uint16_t YYYY, uint8_t MM, uint8_t DD, uint8_t hh, uint8_t mm,
uint8_t ss) {
tmElements_t tm;
tm.Year = CalendarYrToTm(YYYY); // year offset from 1970 in time.h
tm.Month = MM;
tm.Day = DD;
tm.Hour = hh;
tm.Minute = mm;
tm.Second = ss;
return makeTime(tm);
}
// helper function to calculate serial transmit time
TickType_t tx_Ticks(uint32_t framesize, unsigned long baud, uint32_t config,
int8_t rxPin, int8_t txPins) {
uint32_t databits = ((config & 0x0c) >> 2) + 5;
uint32_t stopbits = ((config & 0x20) >> 5) + 1;
uint32_t txTime = (databits + stopbits + 2) * framesize * 1000.0 / baud;
// +1 ms margin for the startbit +1 ms for pending processing time
return round(txTime);
}
#if defined HAS_IF482 || defined HAS_DCF77
#if defined HAS_DCF77 && defined HAS_IF482
#error You must define at most one of IF482 or DCF77!
#endif
void clock_init(void) {
// setup clock output interface
#ifdef HAS_IF482
IF482.begin(HAS_IF482);
#elif defined HAS_DCF77
pinMode(HAS_DCF77, OUTPUT);
#endif
xTaskCreatePinnedToCore(clock_loop, // task function
"clockloop", // name of task
2048, // stack size of task
(void *)1, // task parameter
4, // priority of the task
&ClockTask, // task handle
1); // CPU core
assert(ClockTask); // has clock task started?
} // clock_init
void clock_loop(void *pvParameters) { // ClockTask
configASSERT(((uint32_t)pvParameters) == 1); // FreeRTOS check
TickType_t wakeTime;
uint32_t printtime;
time_t t;
#define t1(t) (t + DCF77_FRAME_SIZE + 1) // future minute for next DCF77 frame
#define t2(t) (t + 1) // future second after sync with 1pps trigger
// preload first DCF frame before start
#ifdef HAS_DCF77
uint8_t *DCFpulse; // pointer on array with DCF pulse bits
DCFpulse = DCF77_Frame(t1(now()));
#endif
// output time telegram for second following sec beginning with timepulse
for (;;) {
xTaskNotifyWait(0x00, ULONG_MAX, &printtime,
portMAX_DELAY); // wait for timepulse
// no confident time -> suppress clock output
if (timeStatus() == timeNotSet)
continue;
t = time_t(printtime);
#if defined HAS_IF482
// IF482_Pulse(t2(t)); // next second
IF482_Pulse(t); // next second
#elif defined HAS_DCF77
if (second(t) == DCF77_FRAME_SIZE - 1) // is it time to load new frame?
DCFpulse = DCF77_Frame(t1(t)); // generate next frame
if (DCFpulse[DCF77_FRAME_SIZE] !=
minute(t1(t))) // have recent frame? (timepulses could be missed!)
continue;
else
// DCF77_Pulse(t2(t), DCFpulse); // then output next second of this frame
DCF77_Pulse(t, DCFpulse); // then output next second of this frame
#endif
} // for
} // clock_loop()
#endif // HAS_IF482 || defined HAS_DCF77