commit
60c6e3c2e8
@ -30,11 +30,6 @@
|
||||
// length of display buffer for lmic event messages
|
||||
#define LMIC_EVENTMSG_LEN 17
|
||||
|
||||
// I2C bus access control
|
||||
#define I2C_MUTEX_LOCK() \
|
||||
(xSemaphoreTake(I2Caccess, pdMS_TO_TICKS(DISPLAYREFRESH_MS)) == pdTRUE)
|
||||
#define I2C_MUTEX_UNLOCK() (xSemaphoreGive(I2Caccess))
|
||||
|
||||
// pseudo system halt function, useful to prevent writeloops to NVRAM
|
||||
#ifndef _ASSERT
|
||||
#define _ASSERT(cond) \
|
||||
|
@ -10,7 +10,8 @@
|
||||
#include "dcf77.h"
|
||||
#include "esp_sntp.h"
|
||||
|
||||
#define HAS_LORA_TIME ((HAS_LORA) && ((TIME_SYNC_LORASERVER) || (TIME_SYNC_LORAWAN)))
|
||||
#define HAS_LORA_TIME \
|
||||
((HAS_LORA) && ((TIME_SYNC_LORASERVER) || (TIME_SYNC_LORAWAN)))
|
||||
|
||||
#define SECS_YR_2000 (946684800UL) // the time at the start of y2k
|
||||
#define GPS_UTC_DIFF 315964800UL // seconds diff between gps and utc epoch
|
||||
@ -26,16 +27,14 @@ extern DRAM_ATTR bool TimePulseTick; // 1sec pps flag set by GPS or RTC
|
||||
extern DRAM_ATTR unsigned long lastPPS;
|
||||
extern hw_timer_t *ppsIRQ;
|
||||
|
||||
void IRAM_ATTR CLOCKIRQ(void);
|
||||
void IRAM_ATTR GPSIRQ(void);
|
||||
void clock_init(void);
|
||||
void clock_loop(void *pvParameters);
|
||||
//void IRAM_ATTR CLOCKIRQ(void);
|
||||
//void IRAM_ATTR GPSIRQ(void);
|
||||
//void clock_loop(void *pvParameters);
|
||||
void setTimeSyncIRQ(void);
|
||||
uint8_t timepulse_init(void);
|
||||
void time_init(void);
|
||||
bool timeIsValid(time_t const t);
|
||||
void calibrateTime(void);
|
||||
bool setMyTime(uint32_t t_sec, uint16_t t_msec,
|
||||
timesource_t mytimesource);
|
||||
bool setMyTime(uint32_t t_sec, uint16_t t_msec, timesource_t mytimesource);
|
||||
time_t compileTime(void);
|
||||
time_t mkgmtime(const struct tm *ptm);
|
||||
TickType_t tx_Ticks(uint32_t framesize, unsigned long baud, uint32_t config,
|
||||
|
@ -52,42 +52,28 @@ int bme_init(void) {
|
||||
int rc = 0;
|
||||
|
||||
#ifdef HAS_BME680
|
||||
// block i2c bus access
|
||||
if (I2C_MUTEX_LOCK()) {
|
||||
Wire.begin(HAS_BME680);
|
||||
iaqSensor.begin(BME680_ADDR, Wire);
|
||||
|
||||
Wire.begin(HAS_BME680);
|
||||
iaqSensor.begin(BME680_ADDR, Wire);
|
||||
ESP_LOGI(TAG, "BSEC v%d.%d.%d.%d", iaqSensor.version.major,
|
||||
iaqSensor.version.minor, iaqSensor.version.major_bugfix,
|
||||
iaqSensor.version.minor_bugfix);
|
||||
|
||||
ESP_LOGI(TAG, "BSEC v%d.%d.%d.%d", iaqSensor.version.major,
|
||||
iaqSensor.version.minor, iaqSensor.version.major_bugfix,
|
||||
iaqSensor.version.minor_bugfix);
|
||||
iaqSensor.setConfig(bsec_config_iaq);
|
||||
loadState();
|
||||
iaqSensor.setTemperatureOffset((float)BME_TEMP_OFFSET);
|
||||
iaqSensor.updateSubscription(sensorList, 10, BSEC_SAMPLE_RATE_LP);
|
||||
|
||||
iaqSensor.setConfig(bsec_config_iaq);
|
||||
loadState();
|
||||
iaqSensor.setTemperatureOffset((float)BME_TEMP_OFFSET);
|
||||
iaqSensor.updateSubscription(sensorList, 10, BSEC_SAMPLE_RATE_LP);
|
||||
|
||||
rc = checkIaqSensorStatus();
|
||||
|
||||
} else
|
||||
ESP_LOGE(TAG, "I2c bus busy - BME680 initialization error");
|
||||
rc = checkIaqSensorStatus();
|
||||
|
||||
#elif defined HAS_BME280
|
||||
if (I2C_MUTEX_LOCK()) {
|
||||
rc = bme.begin(BME280_ADDR);
|
||||
} else
|
||||
ESP_LOGE(TAG, "I2c bus busy - BME280 initialization error");
|
||||
|
||||
rc = bme.begin(BME280_ADDR);
|
||||
#elif defined HAS_BMP180
|
||||
if (I2C_MUTEX_LOCK()) {
|
||||
// Wire.begin(21, 22);
|
||||
rc = bmp.begin();
|
||||
} else
|
||||
ESP_LOGE(TAG, "I2c bus busy - BMP180 initialization error");
|
||||
// Wire.begin(21, 22);
|
||||
rc = bmp.begin();
|
||||
|
||||
#endif
|
||||
|
||||
I2C_MUTEX_UNLOCK(); // release i2c bus access
|
||||
if (rc)
|
||||
bmecycler.attach(BMECYCLE, setBMEIRQ); // start cyclic data transmit
|
||||
return rc;
|
||||
@ -123,8 +109,7 @@ int checkIaqSensorStatus(void) {
|
||||
// store current BME sensor data in struct
|
||||
void bme_storedata(bmeStatus_t *bme_store) {
|
||||
|
||||
if ((cfg.payloadmask & MEMS_DATA) &&
|
||||
(I2C_MUTEX_LOCK())) { // block i2c bus access
|
||||
if (cfg.payloadmask & MEMS_DATA)
|
||||
|
||||
#ifdef HAS_BME680
|
||||
if (iaqSensor.run()) { // if new data is available
|
||||
@ -143,20 +128,17 @@ void bme_storedata(bmeStatus_t *bme_store) {
|
||||
}
|
||||
#elif defined HAS_BME280
|
||||
bme_store->temperature = bme.readTemperature();
|
||||
bme_store->pressure = (bme.readPressure() / 100.0); // conversion Pa -> hPa
|
||||
// bme.readAltitude(SEALEVELPRESSURE_HPA);
|
||||
bme_store->humidity = bme.readHumidity();
|
||||
bme_store->iaq = 0; // IAQ feature not present with BME280
|
||||
bme_store->pressure = (bme.readPressure() / 100.0); // conversion Pa -> hPa
|
||||
// bme.readAltitude(SEALEVELPRESSURE_HPA);
|
||||
bme_store->humidity = bme.readHumidity();
|
||||
bme_store->iaq = 0; // IAQ feature not present with BME280
|
||||
#elif defined HAS_BMP180
|
||||
bme_store->temperature = bmp.readTemperature();
|
||||
bme_store->pressure = (bmp.readPressure() / 100.0); // conversion Pa -> hPa
|
||||
// bme.readAltitude(SEALEVELPRESSURE_HPA);
|
||||
bme_store->iaq = 0; // IAQ feature not present with BME280
|
||||
bme_store->pressure = (bmp.readPressure() / 100.0); // conversion Pa -> hPa
|
||||
// bme.readAltitude(SEALEVELPRESSURE_HPA);
|
||||
bme_store->iaq = 0; // IAQ feature not present with BME280
|
||||
#endif
|
||||
|
||||
I2C_MUTEX_UNLOCK(); // release i2c bus access
|
||||
}
|
||||
|
||||
} // bme_storedata()
|
||||
|
||||
#ifdef HAS_BME680
|
||||
|
@ -18,10 +18,6 @@ void doHousekeeping() {
|
||||
if ((RTC_runmode == RUNMODE_UPDATE) || (RTC_runmode == RUNMODE_MAINTENANCE))
|
||||
do_reset(true); // warmstart
|
||||
|
||||
// try to get time if we don't yet have a recent timesource
|
||||
if (timeSource == _unsynced || timeSource == _set)
|
||||
calibrateTime();
|
||||
|
||||
// print heap and task storage information
|
||||
ESP_LOGD(TAG, "Heap: Free:%d, Min:%d, Size:%d, Alloc:%d, StackHWM:%d",
|
||||
ESP.getFreeHeap(), ESP.getMinFreeHeap(), ESP.getHeapSize(),
|
||||
|
146
src/display.cpp
146
src/display.cpp
@ -90,85 +90,72 @@ void dp_setup(int contrast) {
|
||||
|
||||
void dp_init(bool verbose) {
|
||||
|
||||
#if (HAS_DISPLAY) == 1 // i2c
|
||||
// block i2c bus access
|
||||
if (!I2C_MUTEX_LOCK())
|
||||
ESP_LOGV(TAG, "[%0.3f] i2c mutex lock failed", _seconds());
|
||||
else {
|
||||
#endif
|
||||
dp_setup(DISPLAYCONTRAST);
|
||||
|
||||
dp_setup(DISPLAYCONTRAST);
|
||||
if (verbose) {
|
||||
|
||||
if (verbose) {
|
||||
|
||||
// show startup screen
|
||||
// to come -> display .bmp file with logo
|
||||
// show startup screen
|
||||
// to come -> display .bmp file with logo
|
||||
|
||||
// show chip information
|
||||
#if (VERBOSE)
|
||||
esp_chip_info_t chip_info;
|
||||
esp_chip_info(&chip_info);
|
||||
esp_chip_info_t chip_info;
|
||||
esp_chip_info(&chip_info);
|
||||
|
||||
dp_setFont(MY_FONT_NORMAL);
|
||||
dp_printf("** PAXCOUNTER **");
|
||||
dp_println();
|
||||
dp_printf("Software v%s", PROGVERSION);
|
||||
dp_println();
|
||||
dp_printf("ESP32 %d cores", chip_info.cores);
|
||||
dp_println();
|
||||
dp_printf("Chip Rev.%d", chip_info.revision);
|
||||
dp_println();
|
||||
dp_printf("WiFi%s%s", (chip_info.features & CHIP_FEATURE_BT) ? "/BT" : "",
|
||||
(chip_info.features & CHIP_FEATURE_BLE) ? "/BLE" : "");
|
||||
dp_println();
|
||||
dp_printf("%dMB %s Flash", spi_flash_get_chip_size() / (1024 * 1024),
|
||||
(chip_info.features & CHIP_FEATURE_EMB_FLASH) ? "int."
|
||||
: "ext.");
|
||||
dp_setFont(MY_FONT_NORMAL);
|
||||
dp_printf("** PAXCOUNTER **");
|
||||
dp_println();
|
||||
dp_printf("Software v%s", PROGVERSION);
|
||||
dp_println();
|
||||
dp_printf("ESP32 %d cores", chip_info.cores);
|
||||
dp_println();
|
||||
dp_printf("Chip Rev.%d", chip_info.revision);
|
||||
dp_println();
|
||||
dp_printf("WiFi%s%s", (chip_info.features & CHIP_FEATURE_BT) ? "/BT" : "",
|
||||
(chip_info.features & CHIP_FEATURE_BLE) ? "/BLE" : "");
|
||||
dp_println();
|
||||
dp_printf("%dMB %s Flash", spi_flash_get_chip_size() / (1024 * 1024),
|
||||
(chip_info.features & CHIP_FEATURE_EMB_FLASH) ? "int." : "ext.");
|
||||
|
||||
// give user some time to read or take picture
|
||||
dp_dump(displaybuf);
|
||||
delay(2000);
|
||||
dp_clear();
|
||||
// give user some time to read or take picture
|
||||
dp_dump(displaybuf);
|
||||
delay(2000);
|
||||
dp_clear();
|
||||
#endif // VERBOSE
|
||||
|
||||
#if (HAS_LORA)
|
||||
// generate DEVEUI as QR code and text
|
||||
uint8_t buf[8], *p = buf;
|
||||
char deveui[17];
|
||||
os_getDevEui((u1_t *)buf);
|
||||
snprintf(deveui, 17, "%016llX", (*(uint64_t *)(p)));
|
||||
// generate DEVEUI as QR code and text
|
||||
uint8_t buf[8], *p = buf;
|
||||
char deveui[17];
|
||||
os_getDevEui((u1_t *)buf);
|
||||
snprintf(deveui, 17, "%016llX", (*(uint64_t *)(p)));
|
||||
|
||||
// display DEVEUI as QR code on the left
|
||||
dp_contrast(30);
|
||||
dp_printqr(3, 3, deveui);
|
||||
// display DEVEUI as QR code on the left
|
||||
dp_contrast(30);
|
||||
dp_printqr(3, 3, deveui);
|
||||
|
||||
// display DEVEUI as plain text on the right
|
||||
const int x_offset = QR_SCALEFACTOR * 29 + 14;
|
||||
dp_setTextCursor(x_offset, 0);
|
||||
dp_setFont(MY_FONT_NORMAL);
|
||||
dp_printf("DEVEUI");
|
||||
dp_println();
|
||||
for (uint8_t i = 0; i <= 3; i++) {
|
||||
dp_setTextCursor(x_offset, i + 3);
|
||||
dp_printf("%4.4s", deveui + i * 4);
|
||||
}
|
||||
// display DEVEUI as plain text on the right
|
||||
const int x_offset = QR_SCALEFACTOR * 29 + 14;
|
||||
dp_setTextCursor(x_offset, 0);
|
||||
dp_setFont(MY_FONT_NORMAL);
|
||||
dp_printf("DEVEUI");
|
||||
dp_println();
|
||||
for (uint8_t i = 0; i <= 3; i++) {
|
||||
dp_setTextCursor(x_offset, i + 3);
|
||||
dp_printf("%4.4s", deveui + i * 4);
|
||||
}
|
||||
|
||||
// give user some time to read or take picture
|
||||
dp_dump(displaybuf);
|
||||
// give user some time to read or take picture
|
||||
dp_dump(displaybuf);
|
||||
#if !(BOOTMENU)
|
||||
delay(8000);
|
||||
delay(8000);
|
||||
#endif
|
||||
|
||||
#endif // HAS_LORA
|
||||
|
||||
} // verbose
|
||||
} // verbose
|
||||
|
||||
dp_power(cfg.screenon); // set display off if disabled
|
||||
|
||||
#if (HAS_DISPLAY) == 1 // i2c
|
||||
I2C_MUTEX_UNLOCK(); // release i2c bus access
|
||||
} // mutex
|
||||
#endif
|
||||
dp_power(cfg.screenon); // set display off if disabled
|
||||
|
||||
} // dp_init
|
||||
|
||||
@ -182,29 +169,22 @@ void dp_refresh(bool nextPage) {
|
||||
if (!DisplayIsOn && (DisplayIsOn == cfg.screenon))
|
||||
return;
|
||||
|
||||
// block i2c bus access
|
||||
if (!I2C_MUTEX_LOCK())
|
||||
ESP_LOGV(TAG, "[%0.3f] i2c mutex lock failed", _seconds());
|
||||
else {
|
||||
// set display on/off according to current device configuration
|
||||
if (DisplayIsOn != cfg.screenon) {
|
||||
DisplayIsOn = cfg.screenon;
|
||||
dp_power(cfg.screenon);
|
||||
}
|
||||
// set display on/off according to current device configuration
|
||||
if (DisplayIsOn != cfg.screenon) {
|
||||
DisplayIsOn = cfg.screenon;
|
||||
dp_power(cfg.screenon);
|
||||
}
|
||||
|
||||
#ifndef HAS_BUTTON
|
||||
// auto flip page if we are in unattended mode
|
||||
if ((++framecounter) > (DISPLAYCYCLE * 1000 / DISPLAYREFRESH_MS)) {
|
||||
framecounter = 0;
|
||||
nextPage = true;
|
||||
}
|
||||
// auto flip page if we are in unattended mode
|
||||
if ((++framecounter) > (DISPLAYCYCLE * 1000 / DISPLAYREFRESH_MS)) {
|
||||
framecounter = 0;
|
||||
nextPage = true;
|
||||
}
|
||||
#endif
|
||||
|
||||
dp_drawPage(nextPage);
|
||||
dp_drawPage(nextPage);
|
||||
|
||||
I2C_MUTEX_UNLOCK(); // release i2c bus access
|
||||
|
||||
} // mutex
|
||||
} // refreshDisplay()
|
||||
|
||||
void dp_drawPage(bool nextpage) {
|
||||
@ -600,14 +580,8 @@ void dp_power(uint8_t screenon) {
|
||||
|
||||
void dp_shutdown(void) {
|
||||
#if (HAS_DISPLAY) == 1
|
||||
// block i2c bus access
|
||||
if (!I2C_MUTEX_LOCK())
|
||||
ESP_LOGV(TAG, "[%0.3f] i2c mutex lock failed", _seconds());
|
||||
else {
|
||||
obdPower(&ssoled, false);
|
||||
delay(DISPLAYREFRESH_MS / 1000 * 1.1);
|
||||
I2C_MUTEX_UNLOCK(); // release i2c bus access
|
||||
}
|
||||
obdPower(&ssoled, false);
|
||||
delay(DISPLAYREFRESH_MS / 1000 * 1.1);
|
||||
#elif (HAS_DISPLAY) == 2
|
||||
// to come
|
||||
#endif
|
||||
|
123
src/i2c.cpp
123
src/i2c.cpp
@ -12,7 +12,7 @@ void i2c_init(void) {
|
||||
Wire.begin();
|
||||
}
|
||||
|
||||
//void i2c_deinit(void) { Wire.end(); }
|
||||
// void i2c_deinit(void) { Wire.end(); }
|
||||
void i2c_deinit(void) { Wire.~TwoWire(); }
|
||||
|
||||
void i2c_scan(void) {
|
||||
@ -49,90 +49,71 @@ void i2c_scan(void) {
|
||||
|
||||
ESP_LOGI(TAG, "Starting I2C bus scan...");
|
||||
|
||||
// block i2c bus access
|
||||
if (I2C_MUTEX_LOCK()) {
|
||||
memset(&bbi2c, 0, sizeof(bbi2c));
|
||||
bbi2c.bWire = 0;
|
||||
bbi2c.iSDA = MY_DISPLAY_SDA;
|
||||
bbi2c.iSCL = MY_DISPLAY_SCL;
|
||||
I2CInit(&bbi2c, 100000L); // Scan at 100KHz low speed
|
||||
delay(100); // allow devices to power up
|
||||
|
||||
memset(&bbi2c, 0, sizeof(bbi2c));
|
||||
bbi2c.bWire = 0;
|
||||
bbi2c.iSDA = MY_DISPLAY_SDA;
|
||||
bbi2c.iSCL = MY_DISPLAY_SCL;
|
||||
I2CInit(&bbi2c, 100000L); // Scan at 100KHz low speed
|
||||
delay(100); // allow devices to power up
|
||||
uint8_t map[16];
|
||||
uint8_t i;
|
||||
int iDevice, iCount;
|
||||
|
||||
uint8_t map[16];
|
||||
uint8_t i;
|
||||
int iDevice, iCount;
|
||||
|
||||
I2CScan(&bbi2c, map); // get bitmap of connected I2C devices
|
||||
if (map[0] == 0xfe) // something is wrong with the I2C bus
|
||||
I2CScan(&bbi2c, map); // get bitmap of connected I2C devices
|
||||
if (map[0] == 0xfe) // something is wrong with the I2C bus
|
||||
{
|
||||
ESP_LOGI(TAG, "I2C pins are not correct or the bus is being pulled low "
|
||||
"by a bad device; unable to run scan");
|
||||
} else {
|
||||
iCount = 0;
|
||||
for (i = 1; i < 128; i++) // skip address 0 (general call address) since
|
||||
// more than 1 device can respond
|
||||
{
|
||||
ESP_LOGI(TAG, "I2C pins are not correct or the bus is being pulled low "
|
||||
"by a bad device; unable to run scan");
|
||||
} else {
|
||||
iCount = 0;
|
||||
for (i = 1; i < 128; i++) // skip address 0 (general call address) since
|
||||
// more than 1 device can respond
|
||||
if (map[i >> 3] & (1 << (i & 7))) // device found
|
||||
{
|
||||
if (map[i >> 3] & (1 << (i & 7))) // device found
|
||||
{
|
||||
iCount++;
|
||||
iDevice = I2CDiscoverDevice(&bbi2c, i);
|
||||
ESP_LOGI(TAG, "Device found at 0x%X, type = %s", i,
|
||||
szNames[iDevice]); // show the device name as a string
|
||||
}
|
||||
} // for i
|
||||
ESP_LOGI(TAG, "%u I2C device(s) found", iCount);
|
||||
}
|
||||
|
||||
I2C_MUTEX_UNLOCK(); // release i2c bus access
|
||||
} else
|
||||
ESP_LOGE(TAG, "I2C bus busy - scan error");
|
||||
iCount++;
|
||||
iDevice = I2CDiscoverDevice(&bbi2c, i);
|
||||
ESP_LOGI(TAG, "Device found at 0x%X, type = %s", i,
|
||||
szNames[iDevice]); // show the device name as a string
|
||||
}
|
||||
} // for i
|
||||
ESP_LOGI(TAG, "%u I2C device(s) found", iCount);
|
||||
}
|
||||
}
|
||||
|
||||
// mutexed functions for i2c r/w access
|
||||
// functions for i2c r/w access, mutexing is done by Wire.cpp
|
||||
int i2c_readBytes(uint8_t addr, uint8_t reg, uint8_t *data, uint8_t len) {
|
||||
if (I2C_MUTEX_LOCK()) {
|
||||
|
||||
uint8_t ret = 0;
|
||||
Wire.beginTransmission(addr);
|
||||
Wire.write(reg);
|
||||
Wire.endTransmission(false);
|
||||
uint8_t cnt = Wire.requestFrom(addr, (uint8_t)len, (uint8_t)1);
|
||||
if (!cnt)
|
||||
uint8_t ret = 0;
|
||||
Wire.beginTransmission(addr);
|
||||
Wire.write(reg);
|
||||
Wire.endTransmission(false);
|
||||
uint8_t cnt = Wire.requestFrom(addr, (uint8_t)len, (uint8_t)1);
|
||||
if (!cnt)
|
||||
ret = 0xFF;
|
||||
uint16_t index = 0;
|
||||
while (Wire.available()) {
|
||||
if (index > len) {
|
||||
ret = 0xFF;
|
||||
uint16_t index = 0;
|
||||
while (Wire.available()) {
|
||||
if (index > len) {
|
||||
ret = 0xFF;
|
||||
goto finish;
|
||||
}
|
||||
data[index++] = Wire.read();
|
||||
goto finish;
|
||||
}
|
||||
|
||||
finish:
|
||||
I2C_MUTEX_UNLOCK(); // release i2c bus access
|
||||
return ret;
|
||||
} else {
|
||||
ESP_LOGW(TAG, "[%0.3f] i2c mutex lock failed", _seconds());
|
||||
return 0xFF;
|
||||
data[index++] = Wire.read();
|
||||
}
|
||||
|
||||
finish:
|
||||
return ret ? ret : 0xFF;
|
||||
}
|
||||
|
||||
int i2c_writeBytes(uint8_t addr, uint8_t reg, uint8_t *data, uint8_t len) {
|
||||
if (I2C_MUTEX_LOCK()) {
|
||||
|
||||
uint8_t ret = 0;
|
||||
Wire.beginTransmission(addr);
|
||||
Wire.write(reg);
|
||||
for (uint16_t i = 0; i < len; i++) {
|
||||
Wire.write(data[i]);
|
||||
}
|
||||
ret = Wire.endTransmission();
|
||||
|
||||
I2C_MUTEX_UNLOCK(); // release i2c bus access
|
||||
return ret ? ret : 0xFF;
|
||||
} else {
|
||||
ESP_LOGW(TAG, "[%0.3f] i2c mutex lock failed", _seconds());
|
||||
return 0xFF;
|
||||
uint8_t ret = 0;
|
||||
Wire.beginTransmission(addr);
|
||||
Wire.write(reg);
|
||||
for (uint16_t i = 0; i < len; i++) {
|
||||
Wire.write(data[i]);
|
||||
}
|
||||
ret = Wire.endTransmission();
|
||||
|
||||
return ret ? ret : 0xFF;
|
||||
}
|
||||
|
19
src/main.cpp
19
src/main.cpp
@ -87,11 +87,6 @@ void setup() {
|
||||
|
||||
char features[100] = "";
|
||||
|
||||
// create some semaphores for syncing / mutexing tasks
|
||||
I2Caccess = xSemaphoreCreateMutex(); // for access management of i2c bus
|
||||
_ASSERT(I2Caccess != NULL);
|
||||
I2C_MUTEX_UNLOCK();
|
||||
|
||||
// disable brownout detection
|
||||
#ifdef DISABLE_BROWNOUT
|
||||
// register with brownout is at address DR_REG_RTCCNTL_BASE + 0xd4
|
||||
@ -481,20 +476,8 @@ void setup() {
|
||||
|
||||
// only if we have a timesource we do timesync
|
||||
#if ((HAS_LORA_TIME) || (HAS_GPS) || (HAS_RTC))
|
||||
|
||||
#if (defined HAS_IF482 || defined HAS_DCF77)
|
||||
ESP_LOGI(TAG, "Starting Clock Controller...");
|
||||
clock_init();
|
||||
#endif
|
||||
|
||||
#if (HAS_LORA_TIME)
|
||||
timesync_init(); // create loraserver time sync task
|
||||
#endif
|
||||
|
||||
ESP_LOGI(TAG, "Starting Timekeeper...");
|
||||
_ASSERT(timepulse_init()); // starts pps and cyclic time sync
|
||||
time_init();
|
||||
strcat_P(features, " TIME");
|
||||
|
||||
#endif // timesync
|
||||
|
||||
// show compiled features
|
||||
|
107
src/rtctime.cpp
107
src/rtctime.cpp
@ -10,88 +10,75 @@ RtcDS3231<TwoWire> Rtc(Wire); // RTC hardware i2c interface
|
||||
// initialize RTC
|
||||
uint8_t rtc_init(void) {
|
||||
|
||||
if (I2C_MUTEX_LOCK()) { // block i2c bus access
|
||||
Wire.begin(HAS_RTC);
|
||||
Rtc.Begin(MY_DISPLAY_SDA, MY_DISPLAY_SCL);
|
||||
|
||||
Wire.begin(HAS_RTC);
|
||||
Rtc.Begin(MY_DISPLAY_SDA, MY_DISPLAY_SCL);
|
||||
// configure RTC chip
|
||||
Rtc.Enable32kHzPin(false);
|
||||
Rtc.SetSquareWavePin(DS3231SquareWavePin_ModeNone);
|
||||
|
||||
// configure RTC chip
|
||||
Rtc.Enable32kHzPin(false);
|
||||
Rtc.SetSquareWavePin(DS3231SquareWavePin_ModeNone);
|
||||
|
||||
if (!Rtc.GetIsRunning()) {
|
||||
ESP_LOGI(TAG, "RTC not running, starting now");
|
||||
Rtc.SetIsRunning(true);
|
||||
}
|
||||
if (!Rtc.GetIsRunning()) {
|
||||
ESP_LOGI(TAG, "RTC not running, starting now");
|
||||
Rtc.SetIsRunning(true);
|
||||
}
|
||||
|
||||
#if (TIME_SYNC_COMPILEDATE)
|
||||
// initialize a blank RTC without battery backup with build time
|
||||
RtcDateTime tt = Rtc.GetDateTime();
|
||||
time_t t = tt.Epoch32Time(); // sec2000 -> epoch
|
||||
// initialize a blank RTC without battery backup with build time
|
||||
RtcDateTime tt = Rtc.GetDateTime();
|
||||
time_t t = tt.Epoch32Time(); // sec2000 -> epoch
|
||||
|
||||
if (!Rtc.IsDateTimeValid() || !timeIsValid(t)) {
|
||||
ESP_LOGW(TAG, "RTC has no recent time, setting to compiletime");
|
||||
Rtc.SetDateTime(RtcDateTime(mkgmtime(compileTime()) -
|
||||
SECS_YR_2000)); // epoch -> sec2000
|
||||
}
|
||||
if (!Rtc.IsDateTimeValid() || !timeIsValid(t)) {
|
||||
ESP_LOGW(TAG, "RTC has no recent time, setting to compiletime");
|
||||
Rtc.SetDateTime(RtcDateTime(mkgmtime(compileTime()) -
|
||||
SECS_YR_2000)); // epoch -> sec2000
|
||||
}
|
||||
#endif
|
||||
|
||||
I2C_MUTEX_UNLOCK(); // release i2c bus access
|
||||
ESP_LOGI(TAG, "RTC initialized");
|
||||
return 1; // success
|
||||
} else {
|
||||
ESP_LOGE(TAG, "RTC initialization error, I2C bus busy");
|
||||
return 0; // failure
|
||||
}
|
||||
ESP_LOGI(TAG, "RTC initialized");
|
||||
return 1; // success
|
||||
|
||||
// failure
|
||||
// return 0
|
||||
|
||||
} // rtc_init()
|
||||
|
||||
uint8_t set_rtctime(time_t t) { // t is sec epoch time
|
||||
if (I2C_MUTEX_LOCK()) {
|
||||
|
||||
#ifdef RTC_INT // sync rtc 1Hz pulse on top of second
|
||||
Rtc.SetSquareWavePin(DS3231SquareWavePin_ModeNone); // off
|
||||
Rtc.SetSquareWavePin(DS3231SquareWavePin_ModeClock); // start
|
||||
Rtc.SetSquareWavePin(DS3231SquareWavePin_ModeNone); // off
|
||||
Rtc.SetSquareWavePin(DS3231SquareWavePin_ModeClock); // start
|
||||
#endif
|
||||
Rtc.SetDateTime(RtcDateTime(t - SECS_YR_2000)); // epoch -> sec2000
|
||||
I2C_MUTEX_UNLOCK();
|
||||
ESP_LOGI(TAG, "RTC time synced");
|
||||
return 1; // success
|
||||
} else {
|
||||
ESP_LOGE(TAG, "RTC set time failure");
|
||||
return 0; // failure
|
||||
}
|
||||
Rtc.SetDateTime(RtcDateTime(t - SECS_YR_2000)); // epoch -> sec2000
|
||||
ESP_LOGI(TAG, "RTC time synced");
|
||||
return 1; // success
|
||||
|
||||
// failure
|
||||
// return 0
|
||||
|
||||
} // set_rtctime()
|
||||
|
||||
time_t get_rtctime(uint16_t *msec) {
|
||||
|
||||
time_t t = 0;
|
||||
*msec = 0;
|
||||
if (I2C_MUTEX_LOCK()) {
|
||||
if (Rtc.IsDateTimeValid() && Rtc.GetIsRunning()) {
|
||||
RtcDateTime tt = Rtc.GetDateTime();
|
||||
t = tt.Epoch32Time(); // sec2000 -> epoch
|
||||
}
|
||||
I2C_MUTEX_UNLOCK();
|
||||
#ifdef RTC_INT
|
||||
// adjust time to top of next second by waiting TimePulseTick to flip
|
||||
bool lastTick = TimePulseTick;
|
||||
while (TimePulseTick == lastTick) {
|
||||
};
|
||||
t++;
|
||||
#endif
|
||||
return t;
|
||||
} else {
|
||||
ESP_LOGE(TAG, "RTC get time failure");
|
||||
return 0; // failure
|
||||
if (Rtc.IsDateTimeValid() && Rtc.GetIsRunning()) {
|
||||
RtcDateTime tt = Rtc.GetDateTime();
|
||||
t = tt.Epoch32Time(); // sec2000 -> epoch
|
||||
}
|
||||
#ifdef RTC_INT
|
||||
// adjust time to top of next second by waiting TimePulseTick to flip
|
||||
bool lastTick = TimePulseTick;
|
||||
while (TimePulseTick == lastTick) {
|
||||
};
|
||||
t++;
|
||||
#endif
|
||||
return t;
|
||||
|
||||
} // get_rtctime()
|
||||
|
||||
float get_rtctemp(void) {
|
||||
if (I2C_MUTEX_LOCK()) {
|
||||
RtcTemperature temp = Rtc.GetTemperature();
|
||||
I2C_MUTEX_UNLOCK();
|
||||
return temp.AsFloatDegC();
|
||||
}
|
||||
return 0;
|
||||
RtcTemperature temp = Rtc.GetTemperature();
|
||||
return temp.AsFloatDegC();
|
||||
} // get_rtctemp()
|
||||
|
||||
#endif // HAS_RTC
|
@ -31,6 +31,40 @@ Ticker timesyncer;
|
||||
|
||||
void setTimeSyncIRQ() { xTaskNotify(irqHandlerTask, TIMESYNC_IRQ, eSetBits); }
|
||||
|
||||
// interrupt service routine triggered by GPS PPS
|
||||
void IRAM_ATTR GPSIRQ(void) {
|
||||
|
||||
BaseType_t xHigherPriorityTaskWoken = pdFALSE;
|
||||
|
||||
// take timestamp
|
||||
lastPPS = millis(); // last time of pps
|
||||
|
||||
// yield only if we should
|
||||
if (xHigherPriorityTaskWoken)
|
||||
portYIELD_FROM_ISR();
|
||||
}
|
||||
|
||||
// interrupt service routine triggered by esp32 hardware timer
|
||||
void IRAM_ATTR CLOCKIRQ(void) {
|
||||
|
||||
BaseType_t xHigherPriorityTaskWoken = pdFALSE;
|
||||
|
||||
// advance wall clock, if we have
|
||||
#if (defined HAS_IF482 || defined HAS_DCF77)
|
||||
xTaskNotifyFromISR(ClockTask, uint32_t(time(NULL)), eSetBits,
|
||||
&xHigherPriorityTaskWoken);
|
||||
#endif
|
||||
|
||||
// flip time pulse ticker, if needed
|
||||
#ifdef HAS_DISPLAY
|
||||
TimePulseTick = !TimePulseTick; // flip global variable pulse ticker
|
||||
#endif
|
||||
|
||||
// yield only if we should
|
||||
if (xHigherPriorityTaskWoken)
|
||||
portYIELD_FROM_ISR();
|
||||
}
|
||||
|
||||
void calibrateTime(void) {
|
||||
|
||||
// kick off asynchronous lora timesync if we have
|
||||
@ -63,8 +97,7 @@ void calibrateTime(void) {
|
||||
} // calibrateTime()
|
||||
|
||||
// set system time (UTC), calibrate RTC and RTC_INT pps
|
||||
bool setMyTime(uint32_t t_sec, uint16_t t_msec,
|
||||
timesource_t mytimesource) {
|
||||
bool setMyTime(uint32_t t_sec, uint16_t t_msec, timesource_t mytimesource) {
|
||||
|
||||
struct timeval tv = {0};
|
||||
|
||||
@ -126,7 +159,7 @@ bool setMyTime(uint32_t t_sec, uint16_t t_msec,
|
||||
}
|
||||
|
||||
// helper function to setup a pulse per second for time synchronisation
|
||||
uint8_t timepulse_init() {
|
||||
void timepulse_init(void) {
|
||||
|
||||
// set esp-idf API sntp sync mode
|
||||
// sntp_init();
|
||||
@ -141,22 +174,12 @@ uint8_t timepulse_init() {
|
||||
|
||||
// if we have, use pulse from on board RTC chip as time base for calendar time
|
||||
#if defined RTC_INT
|
||||
|
||||
// setup external rtc 1Hz clock pulse
|
||||
if (I2C_MUTEX_LOCK()) {
|
||||
Rtc.SetSquareWavePinClockFrequency(DS3231SquareWaveClock_1Hz);
|
||||
Rtc.SetSquareWavePin(DS3231SquareWavePin_ModeClock);
|
||||
I2C_MUTEX_UNLOCK();
|
||||
pinMode(RTC_INT, INPUT_PULLUP);
|
||||
attachInterrupt(digitalPinToInterrupt(RTC_INT), CLOCKIRQ, FALLING);
|
||||
ESP_LOGI(TAG, "Timepulse: external (RTC)");
|
||||
return 1; // success
|
||||
} else {
|
||||
ESP_LOGE(TAG, "RTC initialization error, I2C bus busy");
|
||||
return 0; // failure
|
||||
}
|
||||
return 1; // success
|
||||
|
||||
Rtc.SetSquareWavePinClockFrequency(DS3231SquareWaveClock_1Hz);
|
||||
Rtc.SetSquareWavePin(DS3231SquareWavePin_ModeClock);
|
||||
pinMode(RTC_INT, INPUT_PULLUP);
|
||||
attachInterrupt(digitalPinToInterrupt(RTC_INT), CLOCKIRQ, FALLING);
|
||||
ESP_LOGI(TAG, "Timepulse: external (RTC)");
|
||||
#else
|
||||
// use ESP32 hardware timer as time base for calendar time
|
||||
ppsIRQ = timerBegin(1, 8000, true); // set 80 MHz prescaler to 1/10000 sec
|
||||
@ -164,53 +187,17 @@ uint8_t timepulse_init() {
|
||||
timerAttachInterrupt(ppsIRQ, &CLOCKIRQ, false);
|
||||
timerAlarmEnable(ppsIRQ);
|
||||
ESP_LOGI(TAG, "Timepulse: internal (ESP32 hardware timer)");
|
||||
return 1; // success
|
||||
|
||||
#endif
|
||||
|
||||
// start cyclic time sync
|
||||
timesyncer.attach(TIME_SYNC_INTERVAL * 60, setTimeSyncIRQ);
|
||||
|
||||
// get time if we don't have one
|
||||
if (timeSource != _set)
|
||||
setTimeSyncIRQ(); // init systime by RTC or GPS or LORA
|
||||
|
||||
// start cyclic time sync
|
||||
timesyncer.attach(TIME_SYNC_INTERVAL * 60, setTimeSyncIRQ);
|
||||
|
||||
} // timepulse_init
|
||||
|
||||
// interrupt service routine triggered by GPS PPS
|
||||
void IRAM_ATTR GPSIRQ(void) {
|
||||
|
||||
BaseType_t xHigherPriorityTaskWoken = pdFALSE;
|
||||
|
||||
// take timestamp
|
||||
lastPPS = millis(); // last time of pps
|
||||
|
||||
// yield only if we should
|
||||
if (xHigherPriorityTaskWoken)
|
||||
portYIELD_FROM_ISR();
|
||||
}
|
||||
|
||||
// interrupt service routine triggered by esp32 hardware timer
|
||||
void IRAM_ATTR CLOCKIRQ(void) {
|
||||
|
||||
BaseType_t xHigherPriorityTaskWoken = pdFALSE;
|
||||
|
||||
// advance wall clock, if we have
|
||||
#if (defined HAS_IF482 || defined HAS_DCF77)
|
||||
xTaskNotifyFromISR(ClockTask, uint32_t(time(NULL)), eSetBits,
|
||||
&xHigherPriorityTaskWoken);
|
||||
#endif
|
||||
|
||||
// flip time pulse ticker, if needed
|
||||
#ifdef HAS_DISPLAY
|
||||
TimePulseTick = !TimePulseTick; // flip global variable pulse ticker
|
||||
#endif
|
||||
|
||||
// yield only if we should
|
||||
if (xHigherPriorityTaskWoken)
|
||||
portYIELD_FROM_ISR();
|
||||
}
|
||||
|
||||
// helper function to check plausibility of a given epoch time
|
||||
bool timeIsValid(time_t const t) {
|
||||
// is t a time in the past? we use compile time to guess
|
||||
@ -231,26 +218,6 @@ TickType_t tx_Ticks(uint32_t framesize, unsigned long baud, uint32_t config,
|
||||
return round(txTime);
|
||||
}
|
||||
|
||||
void clock_init(void) {
|
||||
|
||||
// setup clock output interface
|
||||
#ifdef HAS_IF482
|
||||
IF482.begin(HAS_IF482);
|
||||
#elif defined HAS_DCF77
|
||||
pinMode(HAS_DCF77, OUTPUT);
|
||||
#endif
|
||||
|
||||
xTaskCreatePinnedToCore(clock_loop, // task function
|
||||
"clockloop", // name of task
|
||||
3072, // stack size of task
|
||||
(void *)1, // task parameter
|
||||
6, // priority of the task
|
||||
&ClockTask, // task handle
|
||||
1); // CPU core
|
||||
|
||||
_ASSERT(ClockTask != NULL); // has clock task started?
|
||||
} // clock_init
|
||||
|
||||
void clock_loop(void *taskparameter) { // ClockTask
|
||||
|
||||
uint32_t current_time = 0, previous_time = 0;
|
||||
@ -333,6 +300,26 @@ void clock_loop(void *taskparameter) { // ClockTask
|
||||
} // for
|
||||
} // clock_loop()
|
||||
|
||||
void clock_init(void) {
|
||||
|
||||
// setup clock output interface
|
||||
#ifdef HAS_IF482
|
||||
IF482.begin(HAS_IF482);
|
||||
#elif defined HAS_DCF77
|
||||
pinMode(HAS_DCF77, OUTPUT);
|
||||
#endif
|
||||
|
||||
xTaskCreatePinnedToCore(clock_loop, // task function
|
||||
"clockloop", // name of task
|
||||
3072, // stack size of task
|
||||
(void *)1, // task parameter
|
||||
6, // priority of the task
|
||||
&ClockTask, // task handle
|
||||
1); // CPU core
|
||||
|
||||
_ASSERT(ClockTask != NULL); // has clock task started?
|
||||
} // clock_init
|
||||
|
||||
// we use compile date to create a time_t reference "in the past"
|
||||
time_t compileTime(void) {
|
||||
|
||||
@ -391,4 +378,16 @@ time_t mkgmtime(const struct tm *ptm) {
|
||||
secs += ptm->tm_min * SecondsPerMinute;
|
||||
secs += ptm->tm_sec;
|
||||
return secs;
|
||||
}
|
||||
|
||||
void time_init(void) {
|
||||
#if (HAS_LORA_TIME)
|
||||
timesync_init(); // create loraserver time sync task
|
||||
#endif
|
||||
ESP_LOGI(TAG, "Starting time pulse...");
|
||||
timepulse_init(); // starts pps and cyclic time sync
|
||||
#if (defined HAS_IF482 || defined HAS_DCF77)
|
||||
ESP_LOGI(TAG, "Starting clock controller...");
|
||||
clock_init();
|
||||
#endif
|
||||
}
|
Loading…
Reference in New Issue
Block a user