v1.3.81 merge

This commit is contained in:
Klaus K Wilting 2018-06-12 12:44:04 +02:00
commit 39f707583f
28 changed files with 2595 additions and 1610 deletions

View File

@ -172,7 +172,7 @@ function Converter(decoded, port) {
} }
``` ```
# Remote command set # Remote control
The device listenes for remote control commands on LoRaWAN Port 2. The device listenes for remote control commands on LoRaWAN Port 2.
Each command is followed by exactly one parameter. Each command is followed by exactly one parameter.

View File

@ -5,57 +5,52 @@
#include <driver/adc.h> #include <driver/adc.h>
#include <esp_adc_cal.h> #include <esp_adc_cal.h>
#define DEFAULT_VREF \ #define DEFAULT_VREF 1100 // to be done: use adc2_vref_to_gpio() to obtain a better estimate
1100 // to be done: use adc2_vref_to_gpio() to obtain a better estimate #define NO_OF_SAMPLES 64 // we do multisampling
#define NO_OF_SAMPLES 64 // we do multisampling
// Local logging tag // Local logging tag
static const char TAG[] = "main"; static const char TAG[] = "main";
static void print_char_val_type(esp_adc_cal_value_t val_type) { static void print_char_val_type(esp_adc_cal_value_t val_type)
if (val_type == ESP_ADC_CAL_VAL_EFUSE_TP) { {
ESP_LOGI(TAG, if (val_type == ESP_ADC_CAL_VAL_EFUSE_TP) {
"ADC characterization based on Two Point values stored in eFuse"); ESP_LOGI(TAG,"ADC characterization based on Two Point values stored in eFuse");
} else if (val_type == ESP_ADC_CAL_VAL_EFUSE_VREF) { } else if (val_type == ESP_ADC_CAL_VAL_EFUSE_VREF) {
ESP_LOGI(TAG, ESP_LOGI(TAG,"ADC characterization based on reference voltage stored in eFuse");
"ADC characterization based on reference voltage stored in eFuse"); } else {
} else { ESP_LOGI(TAG,"ADC characterization based on default reference voltage");
ESP_LOGI(TAG, "ADC characterization based on default reference voltage"); }
}
} }
uint16_t read_voltage(void) { uint16_t read_voltage(void)
static const adc1_channel_t channel = HAS_BATTERY_PROBE; {
static const adc_atten_t atten = ADC_ATTEN_DB_11; static const adc1_channel_t channel = HAS_BATTERY_PROBE;
static const adc_unit_t unit = ADC_UNIT_1; static const adc_atten_t atten = ADC_ATTEN_DB_11;
static const adc_unit_t unit = ADC_UNIT_1;
// configure ADC1 //configure ADC1
ESP_ERROR_CHECK(adc1_config_width(ADC_WIDTH_BIT_12)); ESP_ERROR_CHECK(adc1_config_width(ADC_WIDTH_BIT_12));
ESP_ERROR_CHECK(adc1_config_channel_atten(channel, atten)); ESP_ERROR_CHECK(adc1_config_channel_atten(channel, atten));
// calibrate ADC1 //calibrate ADC1
esp_adc_cal_characteristics_t *adc_chars = esp_adc_cal_characteristics_t *adc_chars = (esp_adc_cal_characteristics_t *) calloc(1, sizeof(esp_adc_cal_characteristics_t));
(esp_adc_cal_characteristics_t *)calloc( esp_adc_cal_value_t val_type = esp_adc_cal_characterize(unit, atten, ADC_WIDTH_BIT_12, DEFAULT_VREF, adc_chars);
1, sizeof(esp_adc_cal_characteristics_t)); print_char_val_type(val_type);
esp_adc_cal_value_t val_type = esp_adc_cal_characterize(
unit, atten, ADC_WIDTH_BIT_12, DEFAULT_VREF, adc_chars);
print_char_val_type(val_type);
// multisample ADC1 //multisample ADC1
uint32_t adc_reading = 0; uint32_t adc_reading = 0;
for (int i = 0; i < NO_OF_SAMPLES; i++) { for (int i = 0; i < NO_OF_SAMPLES; i++) {
adc_reading += adc1_get_raw(channel); adc_reading += adc1_get_raw(channel);
} }
adc_reading /= NO_OF_SAMPLES; adc_reading /= NO_OF_SAMPLES;
// Convert adc_reading to voltage in mV //Convert adc_reading to voltage in mV
uint16_t voltage = uint16_t voltage = (uint16_t) esp_adc_cal_raw_to_voltage(adc_reading, adc_chars);
(uint16_t)esp_adc_cal_raw_to_voltage(adc_reading, adc_chars); #ifdef BATT_FACTOR
#ifdef BATT_FACTOR voltage *= BATT_FACTOR;
voltage *= BATT_FACTOR; #endif
#endif ESP_LOGI(TAG,"Raw: %d / Voltage: %dmV", adc_reading, voltage);
ESP_LOGI(TAG, "Raw: %d / Voltage: %dmV", adc_reading, voltage); return voltage;
return voltage;
} }
#endif // HAS_BATTERY_PROBE #endif // HAS_BATTERY_PROBE

View File

@ -1,5 +1,4 @@
/* switches wifi antenna, if board has switch to select internal and external /* switches wifi antenna, if board has switch to select internal and external antenna */
* antenna */
#ifdef HAS_ANTENNA_SWITCH #ifdef HAS_ANTENNA_SWITCH
@ -8,32 +7,35 @@
// Local logging tag // Local logging tag
static const char TAG[] = "wifi"; static const char TAG[] = "wifi";
typedef enum { ANTENNA_INT = 0, ANTENNA_EXT } antenna_type_t; typedef enum {
ANTENNA_INT = 0,
ANTENNA_EXT
} antenna_type_t;
void antenna_init(void) { void antenna_init(void) {
gpio_config_t gpioconf = {.pin_bit_mask = 1ull << HAS_ANTENNA_SWITCH, gpio_config_t gpioconf = {.pin_bit_mask = 1ull << HAS_ANTENNA_SWITCH,
.mode = GPIO_MODE_OUTPUT, .mode = GPIO_MODE_OUTPUT,
.pull_up_en = GPIO_PULLUP_DISABLE, .pull_up_en = GPIO_PULLUP_DISABLE,
.pull_down_en = GPIO_PULLDOWN_DISABLE, .pull_down_en = GPIO_PULLDOWN_DISABLE,
.intr_type = GPIO_INTR_DISABLE}; .intr_type = GPIO_INTR_DISABLE};
gpio_config(&gpioconf); gpio_config(&gpioconf);
} }
void antenna_select(const uint8_t _ant) { void antenna_select (const uint8_t _ant) {
if (HAS_ANTENNA_SWITCH < 32) { if (HAS_ANTENNA_SWITCH < 32) {
if (_ant == ANTENNA_EXT) { if (_ant == ANTENNA_EXT) {
GPIO_REG_WRITE(GPIO_OUT_W1TS_REG, 1 << HAS_ANTENNA_SWITCH); GPIO_REG_WRITE(GPIO_OUT_W1TS_REG, 1 << HAS_ANTENNA_SWITCH);
} else { } else {
GPIO_REG_WRITE(GPIO_OUT_W1TC_REG, 1 << HAS_ANTENNA_SWITCH); GPIO_REG_WRITE(GPIO_OUT_W1TC_REG, 1 << HAS_ANTENNA_SWITCH);
} }
} else { } else {
if (_ant == ANTENNA_EXT) { if (_ant == ANTENNA_EXT) {
GPIO_REG_WRITE(GPIO_OUT1_W1TS_REG, 1 << (HAS_ANTENNA_SWITCH & 31)); GPIO_REG_WRITE(GPIO_OUT1_W1TS_REG, 1 << (HAS_ANTENNA_SWITCH & 31));
} else { } else {
GPIO_REG_WRITE(GPIO_OUT1_W1TC_REG, 1 << (HAS_ANTENNA_SWITCH & 31)); GPIO_REG_WRITE(GPIO_OUT1_W1TC_REG, 1 << (HAS_ANTENNA_SWITCH & 31));
} }
} }
ESP_LOGI(TAG, "Wifi Antenna switched to %s", _ant ? "external" : "internal"); ESP_LOGI(TAG, "Wifi Antenna switched to %s", _ant ? "external" : "internal");
} }
#endif #endif

View File

@ -8,14 +8,13 @@ https://github.com/nkolban/esp32-snippets/tree/master/BLE/scanner
#include "globals.h" #include "globals.h"
// Bluetooth specific includes // Bluetooth specific includes
#include <bt_types.h>
#include <esp_blufi_api.h> // needed for BLE_ADDR types, do not remove
#include <esp_bt.h> #include <esp_bt.h>
#include <esp_bt_main.h> #include <esp_bt_main.h>
#include <esp_gap_ble_api.h> #include <esp_gap_ble_api.h>
#include <esp_blufi_api.h> // needed for BLE_ADDR types, do not remove
#include <bt_types.h>
#define BT_BD_ADDR_HEX(addr) \ #define BT_BD_ADDR_HEX(addr) addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]
addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]
// local Tag for logging // local Tag for logging
static const char TAG[] = "bluetooth"; static const char TAG[] = "bluetooth";
@ -24,256 +23,208 @@ static const char TAG[] = "bluetooth";
bool mac_add(uint8_t *paddr, int8_t rssi, bool sniff_type); bool mac_add(uint8_t *paddr, int8_t rssi, bool sniff_type);
const char *bt_addr_t_to_string(esp_ble_addr_type_t type) { const char *bt_addr_t_to_string(esp_ble_addr_type_t type) {
switch (type) { switch(type) {
case BLE_ADDR_TYPE_PUBLIC: case BLE_ADDR_TYPE_PUBLIC:
return "BLE_ADDR_TYPE_PUBLIC"; return "BLE_ADDR_TYPE_PUBLIC";
case BLE_ADDR_TYPE_RANDOM: case BLE_ADDR_TYPE_RANDOM:
return "BLE_ADDR_TYPE_RANDOM"; return "BLE_ADDR_TYPE_RANDOM";
case BLE_ADDR_TYPE_RPA_PUBLIC: case BLE_ADDR_TYPE_RPA_PUBLIC:
return "BLE_ADDR_TYPE_RPA_PUBLIC"; return "BLE_ADDR_TYPE_RPA_PUBLIC";
case BLE_ADDR_TYPE_RPA_RANDOM: case BLE_ADDR_TYPE_RPA_RANDOM:
return "BLE_ADDR_TYPE_RPA_RANDOM"; return "BLE_ADDR_TYPE_RPA_RANDOM";
default: default:
return "Unknown addr_t"; return "Unknown addr_t";
} }
} // bt_addr_t_to_string } // bt_addr_t_to_string
const char *btsig_gap_type(uint32_t gap_type) { const char *btsig_gap_type(uint32_t gap_type) {
switch (gap_type) { switch (gap_type)
case 0x01: {
return "Flags"; case 0x01: return "Flags";
case 0x02: case 0x02: return "Incomplete List of 16-bit Service Class UUIDs";
return "Incomplete List of 16-bit Service Class UUIDs"; case 0x03: return "Complete List of 16-bit Service Class UUIDs";
case 0x03: case 0x04: return "Incomplete List of 32-bit Service Class UUIDs";
return "Complete List of 16-bit Service Class UUIDs"; case 0x05: return "Complete List of 32-bit Service Class UUIDs";
case 0x04: case 0x06: return "Incomplete List of 128-bit Service Class UUIDs";
return "Incomplete List of 32-bit Service Class UUIDs"; case 0x07: return "Complete List of 128-bit Service Class UUIDs";
case 0x05: case 0x08: return "Shortened Local Name";
return "Complete List of 32-bit Service Class UUIDs"; case 0x09: return "Complete Local Name";
case 0x06: case 0x0A: return "Tx Power Level";
return "Incomplete List of 128-bit Service Class UUIDs"; case 0x0D: return "Class of Device";
case 0x07: case 0x0E: return "Simple Pairing Hash C/C-192";
return "Complete List of 128-bit Service Class UUIDs"; case 0x0F: return "Simple Pairing Randomizer R/R-192";
case 0x08: case 0x10: return "Device ID/Security Manager TK Value";
return "Shortened Local Name"; case 0x11: return "Security Manager Out of Band Flags";
case 0x09: case 0x12: return "Slave Connection Interval Range";
return "Complete Local Name"; case 0x14: return "List of 16-bit Service Solicitation UUIDs";
case 0x0A: case 0x1F: return "List of 32-bit Service Solicitation UUIDs";
return "Tx Power Level"; case 0x15: return "List of 128-bit Service Solicitation UUIDs";
case 0x0D: case 0x16: return "Service Data - 16-bit UUID";
return "Class of Device"; case 0x20: return "Service Data - 32-bit UUID";
case 0x0E: case 0x21: return "Service Data - 128-bit UUID";
return "Simple Pairing Hash C/C-192"; case 0x22: return "LE Secure Connections Confirmation Value";
case 0x0F: case 0x23: return "LE Secure Connections Random Value";
return "Simple Pairing Randomizer R/R-192"; case 0x24: return "URI";
case 0x10: case 0x25: return "Indoor Positioning";
return "Device ID/Security Manager TK Value"; case 0x26: return "Transport Discovery Data";
case 0x11: case 0x17: return "Public Target Address";
return "Security Manager Out of Band Flags"; case 0x18: return "Random Target Address";
case 0x12: case 0x19: return "Appearance";
return "Slave Connection Interval Range"; case 0x1A: return "Advertising Interval";
case 0x14: case 0x1B: return "LE Bluetooth Device Address";
return "List of 16-bit Service Solicitation UUIDs"; case 0x1C: return "LE Role";
case 0x1F: case 0x1D: return "Simple Pairing Hash C-256";
return "List of 32-bit Service Solicitation UUIDs"; case 0x1E: return "Simple Pairing Randomizer R-256";
case 0x15: case 0x3D: return "3D Information Data";
return "List of 128-bit Service Solicitation UUIDs"; case 0xFF: return "Manufacturer Specific Data";
case 0x16:
return "Service Data - 16-bit UUID"; default:
case 0x20: return "Unknown type";
return "Service Data - 32-bit UUID"; }
case 0x21:
return "Service Data - 128-bit UUID";
case 0x22:
return "LE Secure Connections Confirmation Value";
case 0x23:
return "LE Secure Connections Random Value";
case 0x24:
return "URI";
case 0x25:
return "Indoor Positioning";
case 0x26:
return "Transport Discovery Data";
case 0x17:
return "Public Target Address";
case 0x18:
return "Random Target Address";
case 0x19:
return "Appearance";
case 0x1A:
return "Advertising Interval";
case 0x1B:
return "LE Bluetooth Device Address";
case 0x1C:
return "LE Role";
case 0x1D:
return "Simple Pairing Hash C-256";
case 0x1E:
return "Simple Pairing Randomizer R-256";
case 0x3D:
return "3D Information Data";
case 0xFF:
return "Manufacturer Specific Data";
default:
return "Unknown type";
}
} // btsig_gap_type } // btsig_gap_type
// using IRAM_:ATTR here to speed up callback function // using IRAM_:ATTR here to speed up callback function
IRAM_ATTR void gap_callback_handler(esp_gap_ble_cb_event_t event, IRAM_ATTR void gap_callback_handler(esp_gap_ble_cb_event_t event, esp_ble_gap_cb_param_t *param)
esp_ble_gap_cb_param_t *param) { {
esp_ble_gap_cb_param_t *p = (esp_ble_gap_cb_param_t *)param; esp_ble_gap_cb_param_t *p = (esp_ble_gap_cb_param_t *)param;
ESP_LOGD(TAG, "BT payload rcvd -> type: 0x%.2x -> %s", *p->scan_rst.ble_adv, btsig_gap_type(*p->scan_rst.ble_adv));
ESP_LOGD(TAG, "BT payload rcvd -> type: 0x%.2x -> %s", *p->scan_rst.ble_adv, switch (event)
btsig_gap_type(*p->scan_rst.ble_adv)); {
case ESP_GAP_BLE_SCAN_PARAM_SET_COMPLETE_EVT:
// restart scan
ESP_ERROR_CHECK(esp_ble_gap_start_scanning(BLESCANTIME));
break;
case ESP_GAP_BLE_SCAN_RESULT_EVT:
// evaluate scan results
if ( p->scan_rst.search_evt == ESP_GAP_SEARCH_INQ_CMPL_EVT) // Inquiry complete, scan is done
{ // restart scan
ESP_ERROR_CHECK(esp_ble_gap_start_scanning(BLESCANTIME));
return;
}
if (p->scan_rst.search_evt == ESP_GAP_SEARCH_INQ_RES_EVT) // Inquiry result for a peer device
{ // evaluate sniffed packet
ESP_LOGD(TAG, "Device address (bda): %02x:%02x:%02x:%02x:%02x:%02x", BT_BD_ADDR_HEX(p->scan_rst.bda));
ESP_LOGD(TAG, "Addr_type : %s", bt_addr_t_to_string(p->scan_rst.ble_addr_type));
ESP_LOGD(TAG, "RSSI : %d", p->scan_rst.rssi);
switch (event) { if ((cfg.rssilimit) && (p->scan_rst.rssi < cfg.rssilimit )) { // rssi is negative value
case ESP_GAP_BLE_SCAN_PARAM_SET_COMPLETE_EVT: ESP_LOGI(TAG, "BLTH RSSI %d -> ignoring (limit: %d)", p->scan_rst.rssi, cfg.rssilimit);
// restart scan break;
ESP_ERROR_CHECK(esp_ble_gap_start_scanning(BLESCANTIME)); }
break;
case ESP_GAP_BLE_SCAN_RESULT_EVT: #ifdef VENDORFILTER
// evaluate scan results
if (p->scan_rst.search_evt == if ((p->scan_rst.ble_addr_type == BLE_ADDR_TYPE_RANDOM) || (p->scan_rst.ble_addr_type == BLE_ADDR_TYPE_RPA_RANDOM)) {
ESP_GAP_SEARCH_INQ_CMPL_EVT) // Inquiry complete, scan is done ESP_LOGD(TAG, "BT device filtered");
{ // restart scan break;
ESP_ERROR_CHECK(esp_ble_gap_start_scanning(BLESCANTIME)); }
return;
}
if (p->scan_rst.search_evt == #endif
ESP_GAP_SEARCH_INQ_RES_EVT) // Inquiry result for a peer device
{ // evaluate sniffed packet
ESP_LOGD(TAG, "Device address (bda): %02x:%02x:%02x:%02x:%02x:%02x",
BT_BD_ADDR_HEX(p->scan_rst.bda));
ESP_LOGD(TAG, "Addr_type : %s",
bt_addr_t_to_string(p->scan_rst.ble_addr_type));
ESP_LOGD(TAG, "RSSI : %d", p->scan_rst.rssi);
if ((cfg.rssilimit) && // add this device and show new count total if it was not previously added
(p->scan_rst.rssi < cfg.rssilimit)) { // rssi is negative value mac_add((uint8_t *) p->scan_rst.bda, p->scan_rst.rssi, MAC_SNIFF_BLE);
ESP_LOGI(TAG, "BLTH RSSI %d -> ignoring (limit: %d)", p->scan_rst.rssi,
cfg.rssilimit); /* to be improved in vendorfilter if:
// you can search for elements in the payload using the
// function esp_ble_resolve_adv_data()
//
// Like this, that scans for the "Complete name" (looking inside the payload buffer)
// uint8_t len;
// uint8_t *data = esp_ble_resolve_adv_data(p->scan_rst.ble_adv, ESP_BLE_AD_TYPE_NAME_CMPL, &len);
filter BLE devices using their advertisements to get filter alternative to vendor OUI
if vendorfiltering is on, we ...
- want to count: mobile phones and tablets
- don't want to count: beacons, peripherals (earphones, headsets, printers), cars and machines
see
https://github.com/nkolban/ESP32_BLE_Arduino/blob/master/src/BLEAdvertisedDevice.cpp
http://www.libelium.com/products/meshlium/smartphone-detection/
https://www.question-defense.com/2013/01/12/bluetooth-cod-bluetooth-class-of-deviceclass-of-service-explained
https://www.bluetooth.com/specifications/assigned-numbers/baseband
"The Class of Device (CoD) in case of Bluetooth which allows us to differentiate the type of
device (smartphone, handsfree, computer, LAN/network AP). With this parameter we can
differentiate among pedestrians and vehicles."
*/
} // evaluate sniffed packet
break;
default:
break; break;
} }
#ifdef VENDORFILTER
if ((p->scan_rst.ble_addr_type == BLE_ADDR_TYPE_RANDOM) ||
(p->scan_rst.ble_addr_type == BLE_ADDR_TYPE_RPA_RANDOM)) {
ESP_LOGD(TAG, "BT device filtered");
break;
}
#endif
// add this device and show new count total if it was not previously added
mac_add((uint8_t *)p->scan_rst.bda, p->scan_rst.rssi, MAC_SNIFF_BLE);
/* to be improved in vendorfilter if:
// you can search for elements in the payload using the
// function esp_ble_resolve_adv_data()
//
// Like this, that scans for the "Complete name" (looking inside the
payload buffer)
// uint8_t len;
// uint8_t *data = esp_ble_resolve_adv_data(p->scan_rst.ble_adv,
ESP_BLE_AD_TYPE_NAME_CMPL, &len);
filter BLE devices using their advertisements to get filter alternative to
vendor OUI if vendorfiltering is on, we ...
- want to count: mobile phones and tablets
- don't want to count: beacons, peripherals (earphones, headsets,
printers), cars and machines see
https://github.com/nkolban/ESP32_BLE_Arduino/blob/master/src/BLEAdvertisedDevice.cpp
http://www.libelium.com/products/meshlium/smartphone-detection/
https://www.question-defense.com/2013/01/12/bluetooth-cod-bluetooth-class-of-deviceclass-of-service-explained
https://www.bluetooth.com/specifications/assigned-numbers/baseband
"The Class of Device (CoD) in case of Bluetooth which allows us to
differentiate the type of device (smartphone, handsfree, computer,
LAN/network AP). With this parameter we can differentiate among
pedestrians and vehicles."
*/
} // evaluate sniffed packet
break;
default:
break;
}
} // gap_callback_handler } // gap_callback_handler
esp_err_t register_ble_callback(void) { esp_err_t register_ble_callback(void) {
ESP_LOGI(TAG, "Register GAP callback"); ESP_LOGI(TAG, "Register GAP callback");
// This function is called to occur gap event, such as scan result.
//register the scan callback function to the gap module
ESP_ERROR_CHECK(esp_ble_gap_register_callback(&gap_callback_handler));
// This function is called to occur gap event, such as scan result. static esp_ble_scan_params_t ble_scan_params =
// register the scan callback function to the gap module {
ESP_ERROR_CHECK(esp_ble_gap_register_callback(&gap_callback_handler)); .scan_type = BLE_SCAN_TYPE_PASSIVE,
.own_addr_type = BLE_ADDR_TYPE_RANDOM,
#ifdef VENDORFILTER
.scan_filter_policy = BLE_SCAN_FILTER_ALLOW_WLIST_PRA_DIR,
// ADV_IND, ADV_NONCONN_IND, ADV_SCAN_IND packets are used for broadcasting
// data in broadcast applications (e.g., Beacons), so we don't want them in vendorfilter mode
#else
.scan_filter_policy = BLE_SCAN_FILTER_ALLOW_ALL,
#endif
static esp_ble_scan_params_t ble_scan_params = { .scan_interval = (uint16_t) (cfg.blescantime * 10 / 0.625), // Time = N * 0.625 msec
.scan_type = BLE_SCAN_TYPE_PASSIVE, .scan_window = (uint16_t) (BLESCANWINDOW / 0.625) // Time = N * 0.625 msec
.own_addr_type = BLE_ADDR_TYPE_RANDOM, };
#ifdef VENDORFILTER ESP_LOGI(TAG, "Set GAP scan parameters");
.scan_filter_policy = BLE_SCAN_FILTER_ALLOW_WLIST_PRA_DIR,
// ADV_IND, ADV_NONCONN_IND, ADV_SCAN_IND packets are used for broadcasting
// data in broadcast applications (e.g., Beacons), so we don't want them in
// vendorfilter mode
#else
.scan_filter_policy = BLE_SCAN_FILTER_ALLOW_ALL,
#endif
.scan_interval = // This function is called to set scan parameters.
(uint16_t)(cfg.blescantime * 10 / 0.625), // Time = N * 0.625 msec ESP_ERROR_CHECK(esp_ble_gap_set_scan_params(&ble_scan_params));
.scan_window = (uint16_t)(BLESCANWINDOW / 0.625) // Time = N * 0.625 msec
}; return ESP_OK;
ESP_LOGI(TAG, "Set GAP scan parameters");
// This function is called to set scan parameters.
ESP_ERROR_CHECK(esp_ble_gap_set_scan_params(&ble_scan_params));
return ESP_OK;
} // register_ble_callback } // register_ble_callback
void start_BLEscan(void) { void start_BLEscan(void){
ESP_LOGI(TAG, "Initializing bluetooth scanner ..."); ESP_LOGI(TAG, "Initializing bluetooth scanner ...");
// Initialize BT controller to allocate task and other resource. // Initialize BT controller to allocate task and other resource.
esp_bt_controller_config_t bt_cfg = BT_CONTROLLER_INIT_CONFIG_DEFAULT(); esp_bt_controller_config_t bt_cfg = BT_CONTROLLER_INIT_CONFIG_DEFAULT();
bt_cfg.controller_task_stack_size = bt_cfg.controller_task_stack_size = BLESTACKSIZE; // set BT stack size to value configured in paxcounter.conf
BLESTACKSIZE; // set BT stack size to value configured in paxcounter.conf ESP_ERROR_CHECK(esp_bt_controller_init(&bt_cfg));
ESP_ERROR_CHECK(esp_bt_controller_init(&bt_cfg)); ESP_ERROR_CHECK(esp_bt_controller_enable(ESP_BT_MODE_BTDM));
ESP_ERROR_CHECK(esp_bt_controller_enable(ESP_BT_MODE_BTDM));
// Init and alloc the resource for bluetooth stack, must be done prior to // Init and alloc the resource for bluetooth stack, must be done prior to every bluetooth stuff
// every bluetooth stuff ESP_ERROR_CHECK(esp_bluedroid_init());
ESP_ERROR_CHECK(esp_bluedroid_init()); ESP_ERROR_CHECK(esp_bluedroid_enable());
ESP_ERROR_CHECK(esp_bluedroid_enable());
// Register callback function for capturing bluetooth packets // Register callback function for capturing bluetooth packets
ESP_ERROR_CHECK(register_ble_callback()); ESP_ERROR_CHECK(register_ble_callback());
ESP_LOGI(TAG, "Bluetooth scanner started"); ESP_LOGI(TAG, "Bluetooth scanner started");
} // start_BLEscan } // start_BLEscan
void stop_BLEscan(void) { void stop_BLEscan(void){
ESP_LOGI(TAG, "Shutting down bluetooth scanner ..."); ESP_LOGI(TAG, "Shutting down bluetooth scanner ...");
ESP_ERROR_CHECK(esp_ble_gap_register_callback(NULL)); ESP_ERROR_CHECK(esp_ble_gap_register_callback(NULL));
ESP_ERROR_CHECK(esp_bluedroid_disable()); ESP_ERROR_CHECK(esp_bluedroid_disable());
ESP_ERROR_CHECK(esp_bluedroid_deinit()); ESP_ERROR_CHECK(esp_bluedroid_deinit());
ESP_ERROR_CHECK(esp_bt_controller_disable()); ESP_ERROR_CHECK(esp_bt_controller_disable());
ESP_ERROR_CHECK(esp_bt_controller_deinit()); ESP_ERROR_CHECK(esp_bt_controller_deinit());
ESP_LOGI(TAG, "Bluetooth scanner stopped"); ESP_LOGI(TAG, "Bluetooth scanner stopped");
} // stop_BLEscan } // stop_BLEscan
#endif // BLECOUNTER #endif // BLECOUNTER

View File

@ -13,152 +13,130 @@ esp_err_t err;
// defined in antenna.cpp // defined in antenna.cpp
#ifdef HAS_ANTENNA_SWITCH #ifdef HAS_ANTENNA_SWITCH
void antenna_select(const uint8_t _ant); void antenna_select(const uint8_t _ant);
#endif #endif
// populate cfg vars with factory settings // populate cfg vars with factory settings
void defaultConfig() { void defaultConfig() {
cfg.lorasf = LORASFDEFAULT; // 7-12, initial lora spreadfactor defined in cfg.lorasf = LORASFDEFAULT; // 7-12, initial lora spreadfactor defined in paxcounter.conf
// paxcounter.conf cfg.txpower = 15; // 2-15, lora tx power
cfg.txpower = 15; // 2-15, lora tx power cfg.adrmode = 1; // 0=disabled, 1=enabled
cfg.adrmode = 1; // 0=disabled, 1=enabled cfg.screensaver = 0; // 0=disabled, 1=enabled
cfg.screensaver = 0; // 0=disabled, 1=enabled cfg.screenon = 1; // 0=disabled, 1=enabled
cfg.screenon = 1; // 0=disabled, 1=enabled cfg.countermode = 0; // 0=cyclic, 1=cumulative, 2=cyclic confirmed
cfg.countermode = 0; // 0=cyclic, 1=cumulative, 2=cyclic confirmed cfg.rssilimit = 0; // threshold for rssilimiter, negative value!
cfg.rssilimit = 0; // threshold for rssilimiter, negative value! cfg.sendcycle = SEND_SECS; // payload send cycle [seconds/2]
cfg.sendcycle = SEND_SECS; // payload send cycle [seconds/2] cfg.wifichancycle = WIFI_CHANNEL_SWITCH_INTERVAL; // wifi channel switch cycle [seconds/100]
cfg.wifichancycle = cfg.blescantime = BLESCANINTERVAL / 10; // BT channel scan cycle duration [seconds/100], default 1 (= 10ms)
WIFI_CHANNEL_SWITCH_INTERVAL; // wifi channel switch cycle [seconds/100] cfg.blescan = 1; // 0=disabled, 1=enabled
cfg.blescantime = cfg.wifiant = 0; // 0=internal, 1=external (for LoPy/LoPy4)
BLESCANINTERVAL / cfg.vendorfilter = 1; // 0=disabled, 1=enabled
10; // BT channel scan cycle duration [seconds/100], default 1 (= 10ms) cfg.rgblum = RGBLUMINOSITY; // RGB Led luminosity (0..100%)
cfg.blescan = 1; // 0=disabled, 1=enabled cfg.gpsmode = 1; // 0=disabled, 1=enabled
cfg.wifiant = 0; // 0=internal, 1=external (for LoPy/LoPy4)
cfg.vendorfilter = 1; // 0=disabled, 1=enabled
cfg.rgblum = RGBLUMINOSITY; // RGB Led luminosity (0..100%)
cfg.gpsmode = 1; // 0=disabled, 1=enabled
strncpy(cfg.version, PROGVERSION, sizeof(cfg.version) - 1); strncpy( cfg.version, PROGVERSION, sizeof(cfg.version)-1 );
} }
void open_storage() { void open_storage() {
err = nvs_flash_init();
if (err == ESP_ERR_NVS_NO_FREE_PAGES) {
// NVS partition was truncated and needs to be erased
// Retry nvs_flash_init
ESP_ERROR_CHECK(nvs_flash_erase());
err = nvs_flash_init(); err = nvs_flash_init();
} if (err == ESP_ERR_NVS_NO_FREE_PAGES) {
ESP_ERROR_CHECK(err); // NVS partition was truncated and needs to be erased
// Retry nvs_flash_init
ESP_ERROR_CHECK(nvs_flash_erase());
err = nvs_flash_init();
}
ESP_ERROR_CHECK( err );
// Open // Open
ESP_LOGI(TAG, "Opening NVS"); ESP_LOGI(TAG, "Opening NVS");
err = nvs_open("config", NVS_READWRITE, &my_handle); err = nvs_open("config", NVS_READWRITE, &my_handle);
if (err != ESP_OK) if (err != ESP_OK)
ESP_LOGI(TAG, "Error (%d) opening NVS handle", err); ESP_LOGI(TAG, "Error (%d) opening NVS handle", err);
else else
ESP_LOGI(TAG, "Done"); ESP_LOGI(TAG, "Done");
} }
// erase all keys and values in NVRAM // erase all keys and values in NVRAM
void eraseConfig() { void eraseConfig() {
ESP_LOGI(TAG, "Clearing settings in NVS"); ESP_LOGI(TAG, "Clearing settings in NVS");
open_storage(); open_storage();
if (err == ESP_OK) { if (err == ESP_OK) {
nvs_erase_all(my_handle); nvs_erase_all(my_handle);
nvs_commit(my_handle); nvs_commit(my_handle);
nvs_close(my_handle); nvs_close(my_handle);
ESP_LOGI(TAG, "Done"); ESP_LOGI(TAG, "Done");}
} else { else {
ESP_LOGW(TAG, "NVS erase failed"); ESP_LOGW(TAG, "NVS erase failed"); }
}
} }
// save current configuration from RAM to NVRAM // save current configuration from RAM to NVRAM
void saveConfig() { void saveConfig() {
ESP_LOGI(TAG, "Storing settings in NVS"); ESP_LOGI(TAG, "Storing settings in NVS");
open_storage(); open_storage();
if (err == ESP_OK) { if (err == ESP_OK) {
int8_t flash8 = 0; int8_t flash8 = 0;
int16_t flash16 = 0; int16_t flash16 = 0;
size_t required_size; size_t required_size;
char storedversion[10]; char storedversion[10];
if (nvs_get_str(my_handle, "version", storedversion, &required_size) != if( nvs_get_str(my_handle, "version", storedversion, &required_size) != ESP_OK || strcmp(storedversion, cfg.version) != 0 )
ESP_OK || nvs_set_str(my_handle, "version", cfg.version);
strcmp(storedversion, cfg.version) != 0)
nvs_set_str(my_handle, "version", cfg.version);
if (nvs_get_i8(my_handle, "lorasf", &flash8) != ESP_OK || if( nvs_get_i8(my_handle, "lorasf", &flash8) != ESP_OK || flash8 != cfg.lorasf )
flash8 != cfg.lorasf) nvs_set_i8(my_handle, "lorasf", cfg.lorasf);
nvs_set_i8(my_handle, "lorasf", cfg.lorasf);
if (nvs_get_i8(my_handle, "txpower", &flash8) != ESP_OK || if( nvs_get_i8(my_handle, "txpower", &flash8) != ESP_OK || flash8 != cfg.txpower )
flash8 != cfg.txpower) nvs_set_i8(my_handle, "txpower", cfg.txpower);
nvs_set_i8(my_handle, "txpower", cfg.txpower);
if (nvs_get_i8(my_handle, "adrmode", &flash8) != ESP_OK || if( nvs_get_i8(my_handle, "adrmode", &flash8) != ESP_OK || flash8 != cfg.adrmode )
flash8 != cfg.adrmode) nvs_set_i8(my_handle, "adrmode", cfg.adrmode);
nvs_set_i8(my_handle, "adrmode", cfg.adrmode);
if (nvs_get_i8(my_handle, "screensaver", &flash8) != ESP_OK || if( nvs_get_i8(my_handle, "screensaver", &flash8) != ESP_OK || flash8 != cfg.screensaver )
flash8 != cfg.screensaver) nvs_set_i8(my_handle, "screensaver", cfg.screensaver);
nvs_set_i8(my_handle, "screensaver", cfg.screensaver);
if (nvs_get_i8(my_handle, "screenon", &flash8) != ESP_OK || if( nvs_get_i8(my_handle, "screenon", &flash8) != ESP_OK || flash8 != cfg.screenon )
flash8 != cfg.screenon) nvs_set_i8(my_handle, "screenon", cfg.screenon);
nvs_set_i8(my_handle, "screenon", cfg.screenon);
if (nvs_get_i8(my_handle, "countermode", &flash8) != ESP_OK || if( nvs_get_i8(my_handle, "countermode", &flash8) != ESP_OK || flash8 != cfg.countermode )
flash8 != cfg.countermode) nvs_set_i8(my_handle, "countermode", cfg.countermode);
nvs_set_i8(my_handle, "countermode", cfg.countermode);
if (nvs_get_i8(my_handle, "sendcycle", &flash8) != ESP_OK || if( nvs_get_i8(my_handle, "sendcycle", &flash8) != ESP_OK || flash8 != cfg.sendcycle )
flash8 != cfg.sendcycle) nvs_set_i8(my_handle, "sendcycle", cfg.sendcycle);
nvs_set_i8(my_handle, "sendcycle", cfg.sendcycle);
if (nvs_get_i8(my_handle, "wifichancycle", &flash8) != ESP_OK || if( nvs_get_i8(my_handle, "wifichancycle", &flash8) != ESP_OK || flash8 != cfg.wifichancycle )
flash8 != cfg.wifichancycle) nvs_set_i8(my_handle, "wifichancycle", cfg.wifichancycle);
nvs_set_i8(my_handle, "wifichancycle", cfg.wifichancycle);
if (nvs_get_i8(my_handle, "blescantime", &flash8) != ESP_OK || if( nvs_get_i8(my_handle, "blescantime", &flash8) != ESP_OK || flash8 != cfg.blescantime )
flash8 != cfg.blescantime) nvs_set_i8(my_handle, "blescantime", cfg.blescantime);
nvs_set_i8(my_handle, "blescantime", cfg.blescantime);
if (nvs_get_i8(my_handle, "blescanmode", &flash8) != ESP_OK || if( nvs_get_i8(my_handle, "blescanmode", &flash8) != ESP_OK || flash8 != cfg.blescan )
flash8 != cfg.blescan) nvs_set_i8(my_handle, "blescanmode", cfg.blescan);
nvs_set_i8(my_handle, "blescanmode", cfg.blescan);
if (nvs_get_i8(my_handle, "wifiant", &flash8) != ESP_OK || if( nvs_get_i8(my_handle, "wifiant", &flash8) != ESP_OK || flash8 != cfg.wifiant )
flash8 != cfg.wifiant) nvs_set_i8(my_handle, "wifiant", cfg.wifiant);
nvs_set_i8(my_handle, "wifiant", cfg.wifiant);
if (nvs_get_i8(my_handle, "vendorfilter", &flash8) != ESP_OK || if( nvs_get_i8(my_handle, "vendorfilter", &flash8) != ESP_OK || flash8 != cfg.vendorfilter )
flash8 != cfg.vendorfilter) nvs_set_i8(my_handle, "vendorfilter", cfg.vendorfilter);
nvs_set_i8(my_handle, "vendorfilter", cfg.vendorfilter);
if (nvs_get_i8(my_handle, "rgblum", &flash8) != ESP_OK || if( nvs_get_i8(my_handle, "rgblum", &flash8) != ESP_OK || flash8 != cfg.rgblum )
flash8 != cfg.rgblum) nvs_set_i8(my_handle, "rgblum", cfg.rgblum);
nvs_set_i8(my_handle, "rgblum", cfg.rgblum);
if (nvs_get_i8(my_handle, "gpsmode", &flash8) != ESP_OK || if( nvs_get_i8(my_handle, "gpsmode", &flash8) != ESP_OK || flash8 != cfg.gpsmode )
flash8 != cfg.gpsmode)
nvs_set_i8(my_handle, "gpsmode", cfg.gpsmode); nvs_set_i8(my_handle, "gpsmode", cfg.gpsmode);
if (nvs_get_i16(my_handle, "rssilimit", &flash16) != ESP_OK || if( nvs_get_i16(my_handle, "rssilimit", &flash16) != ESP_OK || flash16 != cfg.rssilimit )
flash16 != cfg.rssilimit) nvs_set_i16(my_handle, "rssilimit", cfg.rssilimit);
nvs_set_i16(my_handle, "rssilimit", cfg.rssilimit);
err = nvs_commit(my_handle); err = nvs_commit(my_handle);
nvs_close(my_handle); nvs_close(my_handle);
if (err == ESP_OK) { if ( err == ESP_OK ) {
ESP_LOGI(TAG, "Done"); ESP_LOGI(TAG, "Done");
} else {
ESP_LOGW(TAG, "NVS config write failed");
}
} else { } else {
ESP_LOGW(TAG, "NVS config write failed"); ESP_LOGW(TAG, "Error (%d) opening NVS handle", err);
} }
} else {
ESP_LOGW(TAG, "Error (%d) opening NVS handle", err);
}
} }
// set and save cfg.version // set and save cfg.version
@ -174,33 +152,31 @@ void loadConfig() {
ESP_LOGI(TAG, "Reading settings from NVS"); ESP_LOGI(TAG, "Reading settings from NVS");
open_storage(); open_storage();
if (err != ESP_OK) { if (err != ESP_OK) {
ESP_LOGW(TAG, "Error (%d) opening NVS handle, storing defaults", err); ESP_LOGW(TAG,"Error (%d) opening NVS handle, storing defaults", err);
saveConfig(); saveConfig(); } // saves factory settings to NVRAM
} // saves factory settings to NVRAM
else { else {
int8_t flash8 = 0; int8_t flash8 = 0;
int16_t flash16 = 0; int16_t flash16 = 0;
size_t required_size; size_t required_size;
// check if configuration stored in NVRAM matches PROGVERSION // check if configuration stored in NVRAM matches PROGVERSION
if (nvs_get_str(my_handle, "version", NULL, &required_size) == ESP_OK) { if( nvs_get_str(my_handle, "version", NULL, &required_size) == ESP_OK ) {
nvs_get_str(my_handle, "version", cfg.version, &required_size); nvs_get_str(my_handle, "version", cfg.version, &required_size);
ESP_LOGI(TAG, "NVRAM settings version = %s", cfg.version); ESP_LOGI(TAG, "NVRAM settings version = %s", cfg.version);
if (strcmp(cfg.version, PROGVERSION)) { if (strcmp(cfg.version, PROGVERSION)) {
ESP_LOGI(TAG, "migrating NVRAM settings to new version %s", ESP_LOGI(TAG, "migrating NVRAM settings to new version %s", PROGVERSION);
PROGVERSION);
nvs_close(my_handle); nvs_close(my_handle);
migrateVersion(); migrateVersion();
} }
} else { } else {
ESP_LOGI(TAG, "new version %s, deleting NVRAM settings", PROGVERSION); ESP_LOGI(TAG, "new version %s, deleting NVRAM settings", PROGVERSION);
nvs_close(my_handle); nvs_close(my_handle);
eraseConfig(); eraseConfig();
migrateVersion(); migrateVersion();
} }
// overwrite defaults with valid values from NVRAM // overwrite defaults with valid values from NVRAM
if (nvs_get_i8(my_handle, "lorasf", &flash8) == ESP_OK) { if( nvs_get_i8(my_handle, "lorasf", &flash8) == ESP_OK ) {
cfg.lorasf = flash8; cfg.lorasf = flash8;
ESP_LOGI(TAG, "lorasf = %d", flash8); ESP_LOGI(TAG, "lorasf = %d", flash8);
} else { } else {
@ -208,7 +184,7 @@ void loadConfig() {
saveConfig(); saveConfig();
} }
if (nvs_get_i8(my_handle, "txpower", &flash8) == ESP_OK) { if( nvs_get_i8(my_handle, "txpower", &flash8) == ESP_OK ) {
cfg.txpower = flash8; cfg.txpower = flash8;
ESP_LOGI(TAG, "txpower = %d", flash8); ESP_LOGI(TAG, "txpower = %d", flash8);
} else { } else {
@ -216,7 +192,7 @@ void loadConfig() {
saveConfig(); saveConfig();
} }
if (nvs_get_i8(my_handle, "adrmode", &flash8) == ESP_OK) { if( nvs_get_i8(my_handle, "adrmode", &flash8) == ESP_OK ) {
cfg.adrmode = flash8; cfg.adrmode = flash8;
ESP_LOGI(TAG, "adrmode = %d", flash8); ESP_LOGI(TAG, "adrmode = %d", flash8);
} else { } else {
@ -224,7 +200,7 @@ void loadConfig() {
saveConfig(); saveConfig();
} }
if (nvs_get_i8(my_handle, "screensaver", &flash8) == ESP_OK) { if( nvs_get_i8(my_handle, "screensaver", &flash8) == ESP_OK ) {
cfg.screensaver = flash8; cfg.screensaver = flash8;
ESP_LOGI(TAG, "screensaver = %d", flash8); ESP_LOGI(TAG, "screensaver = %d", flash8);
} else { } else {
@ -232,7 +208,7 @@ void loadConfig() {
saveConfig(); saveConfig();
} }
if (nvs_get_i8(my_handle, "screenon", &flash8) == ESP_OK) { if( nvs_get_i8(my_handle, "screenon", &flash8) == ESP_OK ) {
cfg.screenon = flash8; cfg.screenon = flash8;
ESP_LOGI(TAG, "screenon = %d", flash8); ESP_LOGI(TAG, "screenon = %d", flash8);
} else { } else {
@ -240,7 +216,7 @@ void loadConfig() {
saveConfig(); saveConfig();
} }
if (nvs_get_i8(my_handle, "countermode", &flash8) == ESP_OK) { if( nvs_get_i8(my_handle, "countermode", &flash8) == ESP_OK ) {
cfg.countermode = flash8; cfg.countermode = flash8;
ESP_LOGI(TAG, "countermode = %d", flash8); ESP_LOGI(TAG, "countermode = %d", flash8);
} else { } else {
@ -248,7 +224,7 @@ void loadConfig() {
saveConfig(); saveConfig();
} }
if (nvs_get_i8(my_handle, "sendcycle", &flash8) == ESP_OK) { if( nvs_get_i8(my_handle, "sendcycle", &flash8) == ESP_OK ) {
cfg.sendcycle = flash8; cfg.sendcycle = flash8;
ESP_LOGI(TAG, "sendcycle = %d", flash8); ESP_LOGI(TAG, "sendcycle = %d", flash8);
} else { } else {
@ -256,7 +232,7 @@ void loadConfig() {
saveConfig(); saveConfig();
} }
if (nvs_get_i8(my_handle, "wifichancycle", &flash8) == ESP_OK) { if( nvs_get_i8(my_handle, "wifichancycle", &flash8) == ESP_OK ) {
cfg.wifichancycle = flash8; cfg.wifichancycle = flash8;
ESP_LOGI(TAG, "wifichancycle = %d", flash8); ESP_LOGI(TAG, "wifichancycle = %d", flash8);
} else { } else {
@ -264,7 +240,7 @@ void loadConfig() {
saveConfig(); saveConfig();
} }
if (nvs_get_i8(my_handle, "wifiant", &flash8) == ESP_OK) { if( nvs_get_i8(my_handle, "wifiant", &flash8) == ESP_OK ) {
cfg.wifiant = flash8; cfg.wifiant = flash8;
ESP_LOGI(TAG, "wifiantenna = %d", flash8); ESP_LOGI(TAG, "wifiantenna = %d", flash8);
} else { } else {
@ -272,7 +248,7 @@ void loadConfig() {
saveConfig(); saveConfig();
} }
if (nvs_get_i8(my_handle, "vendorfilter", &flash8) == ESP_OK) { if( nvs_get_i8(my_handle, "vendorfilter", &flash8) == ESP_OK ) {
cfg.vendorfilter = flash8; cfg.vendorfilter = flash8;
ESP_LOGI(TAG, "vendorfilter = %d", flash8); ESP_LOGI(TAG, "vendorfilter = %d", flash8);
} else { } else {
@ -280,7 +256,7 @@ void loadConfig() {
saveConfig(); saveConfig();
} }
if (nvs_get_i8(my_handle, "rgblum", &flash8) == ESP_OK) { if( nvs_get_i8(my_handle, "rgblum", &flash8) == ESP_OK ) {
cfg.rgblum = flash8; cfg.rgblum = flash8;
ESP_LOGI(TAG, "rgbluminosity = %d", flash8); ESP_LOGI(TAG, "rgbluminosity = %d", flash8);
} else { } else {
@ -288,7 +264,7 @@ void loadConfig() {
saveConfig(); saveConfig();
} }
if (nvs_get_i8(my_handle, "blescantime", &flash8) == ESP_OK) { if( nvs_get_i8(my_handle, "blescantime", &flash8) == ESP_OK ) {
cfg.blescantime = flash8; cfg.blescantime = flash8;
ESP_LOGI(TAG, "blescantime = %d", flash8); ESP_LOGI(TAG, "blescantime = %d", flash8);
} else { } else {
@ -296,7 +272,7 @@ void loadConfig() {
saveConfig(); saveConfig();
} }
if (nvs_get_i8(my_handle, "blescanmode", &flash8) == ESP_OK) { if( nvs_get_i8(my_handle, "blescanmode", &flash8) == ESP_OK ) {
cfg.blescan = flash8; cfg.blescan = flash8;
ESP_LOGI(TAG, "BLEscanmode = %d", flash8); ESP_LOGI(TAG, "BLEscanmode = %d", flash8);
} else { } else {
@ -304,7 +280,7 @@ void loadConfig() {
saveConfig(); saveConfig();
} }
if (nvs_get_i16(my_handle, "rssilimit", &flash16) == ESP_OK) { if( nvs_get_i16(my_handle, "rssilimit", &flash16) == ESP_OK ) {
cfg.rssilimit = flash16; cfg.rssilimit = flash16;
ESP_LOGI(TAG, "rssilimit = %d", flash16); ESP_LOGI(TAG, "rssilimit = %d", flash16);
} else { } else {
@ -312,7 +288,7 @@ void loadConfig() {
saveConfig(); saveConfig();
} }
if (nvs_get_i8(my_handle, "gpsmode", &flash8) == ESP_OK) { if( nvs_get_i8(my_handle, "gpsmode", &flash8) == ESP_OK ) {
cfg.gpsmode = flash8; cfg.gpsmode = flash8;
ESP_LOGI(TAG, "GPSmode = %d", flash8); ESP_LOGI(TAG, "GPSmode = %d", flash8);
} else { } else {
@ -324,9 +300,9 @@ void loadConfig() {
ESP_LOGI(TAG, "Done"); ESP_LOGI(TAG, "Done");
// put actions to be triggered after config loaded here // put actions to be triggered after config loaded here
#ifdef HAS_ANTENNA_SWITCH // set antenna type, if device has one #ifdef HAS_ANTENNA_SWITCH // set antenna type, if device has one
antenna_select(cfg.wifiant); antenna_select(cfg.wifiant);
#endif #endif
} }
} }

View File

@ -2,18 +2,18 @@
#include <Arduino.h> #include <Arduino.h>
// std::set for unified array functions // std::set for unified array functions
#include <algorithm>
#include <array>
#include <set> #include <set>
#include <array>
#include <algorithm>
// OLED Display // OLED Display
#ifdef HAS_DISPLAY #ifdef HAS_DISPLAY
#include <U8x8lib.h> #include <U8x8lib.h>
#endif #endif
// GPS //GPS
#ifdef HAS_GPS #ifdef HAS_GPS
#include <TinyGPS++.h> #include <TinyGPS++.h>
#endif #endif
// LMIC-Arduino LoRaWAN Stack // LMIC-Arduino LoRaWAN Stack
@ -22,43 +22,43 @@
// LED controls // LED controls
#ifdef HAS_RGB_LED #ifdef HAS_RGB_LED
#include <SmartLeds.h> #include <SmartLeds.h>
#endif #endif
#include "rgb_led.h"
#include "macsniff.h" #include "macsniff.h"
#include "main.h" #include "main.h"
#include "rgb_led.h"
// Struct holding devices's runtime configuration // Struct holding devices's runtime configuration
typedef struct { typedef struct {
uint8_t lorasf; // 7-12, lora spreadfactor uint8_t lorasf; // 7-12, lora spreadfactor
uint8_t txpower; // 2-15, lora tx power uint8_t txpower; // 2-15, lora tx power
uint8_t adrmode; // 0=disabled, 1=enabled uint8_t adrmode; // 0=disabled, 1=enabled
uint8_t screensaver; // 0=disabled, 1=enabled uint8_t screensaver; // 0=disabled, 1=enabled
uint8_t screenon; // 0=disabled, 1=enabled uint8_t screenon; // 0=disabled, 1=enabled
uint8_t countermode; // 0=cyclic unconfirmed, 1=cumulative, 2=cyclic confirmed uint8_t countermode; // 0=cyclic unconfirmed, 1=cumulative, 2=cyclic confirmed
int16_t rssilimit; // threshold for rssilimiter, negative value! int16_t rssilimit; // threshold for rssilimiter, negative value!
uint8_t sendcycle; // payload send cycle [seconds/2] uint8_t sendcycle; // payload send cycle [seconds/2]
uint8_t wifichancycle; // wifi channel switch cycle [seconds/100] uint8_t wifichancycle; // wifi channel switch cycle [seconds/100]
uint8_t blescantime; // BLE scan cycle duration [seconds] uint8_t blescantime; // BLE scan cycle duration [seconds]
uint8_t blescan; // 0=disabled, 1=enabled uint8_t blescan; // 0=disabled, 1=enabled
uint8_t wifiant; // 0=internal, 1=external (for LoPy/LoPy4) uint8_t wifiant; // 0=internal, 1=external (for LoPy/LoPy4)
uint8_t vendorfilter; // 0=disabled, 1=enabled uint8_t vendorfilter; // 0=disabled, 1=enabled
uint8_t rgblum; // RGB Led luminosity (0..100%) uint8_t rgblum; // RGB Led luminosity (0..100%)
uint8_t gpsmode; // 0=disabled, 1=enabled uint8_t gpsmode; // 0=disabled, 1=enabled
char version[10]; // Firmware version char version[10]; // Firmware version
} configData_t; } configData_t;
#ifdef HAS_GPS #ifdef HAS_GPS
typedef struct { typedef struct {
uint32_t latitude; uint32_t latitude;
uint32_t longitude; uint32_t longitude;
uint8_t satellites; uint8_t satellites;
uint16_t hdop; uint16_t hdop;
uint16_t altitude; uint16_t altitude;
} gpsStatus_t; } gpsStatus_t;
extern gpsStatus_t gps_status; // struct for storing gps data extern gpsStatus_t gps_status; // struct for storing gps data
extern TinyGPSPlus gps; // Make TinyGPS++ instance globally availabe extern TinyGPSPlus gps; // Make TinyGPS++ instance globally availabe
#endif #endif
extern configData_t cfg; extern configData_t cfg;
@ -68,7 +68,6 @@ extern char display_lora[], display_lmic[];
extern int countermode, screensaver, adrmode, lorasf, txpower, rlim; extern int countermode, screensaver, adrmode, lorasf, txpower, rlim;
extern uint16_t macs_total, macs_wifi, macs_ble; // MAC counters extern uint16_t macs_total, macs_wifi, macs_ble; // MAC counters
extern std::set<uint16_t> macs; extern std::set<uint16_t> macs;
extern hw_timer_t extern hw_timer_t * channelSwitch; // hardware timer used for wifi channel switching
*channelSwitch; // hardware timer used for wifi channel switching extern xref2u1_t rcmd_data; // buffer for rcommand results size
extern xref2u1_t rcmd_data; // buffer for rcommand results size extern u1_t rcmd_data_size; // buffer for rcommand results size
extern u1_t rcmd_data_size; // buffer for rcommand results size

View File

@ -7,73 +7,74 @@ static const char TAG[] = "main";
// read GPS data and cast to global struct // read GPS data and cast to global struct
void gps_read() { void gps_read() {
gps_status.latitude = (uint32_t)(gps.location.lat() * 1000000); gps_status.latitude = (uint32_t) (gps.location.lat() * 1000000);
gps_status.longitude = (uint32_t)(gps.location.lng() * 1000000); gps_status.longitude = (uint32_t) (gps.location.lng() * 1000000);
gps_status.satellites = (uint8_t)gps.satellites.value(); gps_status.satellites = (uint8_t) gps.satellites.value();
gps_status.hdop = (uint16_t)gps.hdop.value(); gps_status.hdop = (uint16_t) gps.hdop.value();
gps_status.altitude = (uint16_t)gps.altitude.meters(); gps_status.altitude = (uint16_t) gps.altitude.meters();
} }
// GPS serial feed FreeRTos Task // GPS serial feed FreeRTos Task
void gps_loop(void *pvParameters) { void gps_loop(void * pvParameters) {
configASSERT(((uint32_t)pvParameters) == 1); // FreeRTOS check configASSERT( ( ( uint32_t ) pvParameters ) == 1 ); // FreeRTOS check
// initialize and, if needed, configure, GPS // initialize and, if needed, configure, GPS
#if defined GPS_SERIAL #if defined GPS_SERIAL
HardwareSerial GPS_Serial(1); HardwareSerial GPS_Serial(1);
#elif defined GPS_I2C #elif defined GPS_I2C
// to be done // to be done
#endif #endif
while (1) { while(1) {
if (cfg.gpsmode) { if (cfg.gpsmode)
#if defined GPS_SERIAL {
#if defined GPS_SERIAL
// serial connect to GPS device
GPS_Serial.begin(GPS_SERIAL);
while(cfg.gpsmode) {
// feed GPS decoder with serial NMEA data from GPS device
while (GPS_Serial.available()) {
gps.encode(GPS_Serial.read());
}
vTaskDelay(1/portTICK_PERIOD_MS); // reset watchdog
}
// after GPS function was disabled, close connect to GPS device
GPS_Serial.end();
// serial connect to GPS device #elif defined GPS_I2C
GPS_Serial.begin(GPS_SERIAL);
// I2C connect to GPS device with 100 kHz
Wire.begin(GPS_I2C_PINS, 100000);
Wire.beginTransmission(GPS_I2C_ADDRESS_WRITE);
Wire.write(0x00);
while (cfg.gpsmode) { i2c_ret == Wire.beginTransmission(GPS_I2C_ADDRESS_READ);
// feed GPS decoder with serial NMEA data from GPS device if (i2c_ret == 0) { // check if device seen on i2c bus
while (GPS_Serial.available()) { while(cfg.gpsmode) {
gps.encode(GPS_Serial.read()); // feed GPS decoder with serial NMEA data from GPS device
while (Wire.available()) {
Wire.requestFrom(GPS_I2C_ADDRESS_READ, 255);
gps.encode(Wire.read());
vTaskDelay(1/portTICK_PERIOD_MS); // reset watchdog
}
}
// after GPS function was disabled, close connect to GPS device
Wire.endTransmission();
Wire.setClock(400000); // Set back to 400KHz to speed up OLED
}
#endif
} }
vTaskDelay(1 / portTICK_PERIOD_MS); // reset watchdog
} vTaskDelay(1/portTICK_PERIOD_MS); // reset watchdog
// after GPS function was disabled, close connect to GPS device
GPS_Serial.end();
#elif defined GPS_I2C } // end of infinite loop
// I2C connect to GPS device with 100 kHz
Wire.begin(GPS_I2C_PINS, 100000);
Wire.beginTransmission(GPS_I2C_ADDRESS_WRITE);
Wire.write(0x00);
i2c_ret == Wire.beginTransmission(GPS_I2C_ADDRESS_READ);
if (i2c_ret == 0) { // check if device seen on i2c bus
while (cfg.gpsmode) {
// feed GPS decoder with serial NMEA data from GPS device
while (Wire.available()) {
Wire.requestFrom(GPS_I2C_ADDRESS_READ, 255);
gps.encode(Wire.read());
vTaskDelay(1 / portTICK_PERIOD_MS); // reset watchdog
}
}
// after GPS function was disabled, close connect to GPS device
Wire.endTransmission();
Wire.setClock(400000); // Set back to 400KHz to speed up OLED
}
#endif
}
vTaskDelay(1 / portTICK_PERIOD_MS); // reset watchdog
} // end of infinite loop
} // gps_loop() } // gps_loop()
#endif // HAS_GPS #endif // HAS_GPS

View File

@ -1,19 +1,19 @@
// Hardware related definitions for Pycom FiPy Board // Hardware related definitions for Pycom FiPy Board
#define CFG_sx1272_radio 1 #define CFG_sx1272_radio 1
#define HAS_LED NOT_A_PIN // FiPy has no on board LED, so we use RGB LED #define HAS_LED NOT_A_PIN // FiPy has no on board LED, so we use RGB LED
#define HAS_RGB_LED GPIO_NUM_0 // WS2812B RGB LED on GPIO0 #define HAS_RGB_LED GPIO_NUM_0 // WS2812B RGB LED on GPIO0
// Hardware pin definitions for Pycom FiPy board // Hardware pin definitions for Pycom FiPy board
#define PIN_SPI_SS GPIO_NUM_18 #define PIN_SPI_SS GPIO_NUM_18
#define PIN_SPI_MOSI GPIO_NUM_27 #define PIN_SPI_MOSI GPIO_NUM_27
#define PIN_SPI_MISO GPIO_NUM_19 #define PIN_SPI_MISO GPIO_NUM_19
#define PIN_SPI_SCK GPIO_NUM_5 #define PIN_SPI_SCK GPIO_NUM_5
#define RST LMIC_UNUSED_PIN #define RST LMIC_UNUSED_PIN
#define DIO0 GPIO_NUM_23 // LoRa IRQ #define DIO0 GPIO_NUM_23 // LoRa IRQ
#define DIO1 GPIO_NUM_23 // workaround #define DIO1 GPIO_NUM_23 // workaround
#define DIO2 LMIC_UNUSED_PIN #define DIO2 LMIC_UNUSED_PIN
// select WIFI antenna (internal = onboard / external = u.fl socket) // select WIFI antenna (internal = onboard / external = u.fl socket)
#define HAS_ANTENNA_SWITCH GPIO_NUM_21 // pin for switching wifi antenna #define HAS_ANTENNA_SWITCH GPIO_NUM_21 // pin for switching wifi antenna
#define WIFI_ANTENNA 0 // 0 = internal, 1 = external #define WIFI_ANTENNA 0 // 0 = internal, 1 = external

View File

@ -4,36 +4,22 @@
#define HAS_DISPLAY U8X8_SSD1306_128X64_NONAME_HW_I2C // OLED-Display on board #define HAS_DISPLAY U8X8_SSD1306_128X64_NONAME_HW_I2C // OLED-Display on board
//#define DISPLAY_FLIP 1 // uncomment this for rotated display //#define DISPLAY_FLIP 1 // uncomment this for rotated display
#define HAS_LED GPIO_NUM_25 // white LED on board #define HAS_LED GPIO_NUM_25 // white LED on board
#define HAS_BUTTON GPIO_NUM_0 // button "PROG" on board #define HAS_BUTTON GPIO_NUM_0 // button "PROG" on board
// re-define pin definitions of pins_arduino.h // re-define pin definitions of pins_arduino.h
#define PIN_SPI_SS \ #define PIN_SPI_SS GPIO_NUM_18 // ESP32 GPIO18 (Pin18) -- SX1276 NSS (Pin19) SPI Chip Select Input
GPIO_NUM_18 // ESP32 GPIO18 (Pin18) -- SX1276 NSS (Pin19) SPI Chip Select #define PIN_SPI_MOSI GPIO_NUM_27 // ESP32 GPIO27 (Pin27) -- SX1276 MOSI (Pin18) SPI Data Input
// Input #define PIN_SPI_MISO GPIO_NUM_19 // ESP32 GPIO19 (Pin19) -- SX1276 MISO (Pin17) SPI Data Output
#define PIN_SPI_MOSI \ #define PIN_SPI_SCK GPIO_NUM_5 // ESP32 GPIO5 (Pin5) -- SX1276 SCK (Pin16) SPI Clock Input
GPIO_NUM_27 // ESP32 GPIO27 (Pin27) -- SX1276 MOSI (Pin18) SPI Data Input
#define PIN_SPI_MISO \
GPIO_NUM_19 // ESP32 GPIO19 (Pin19) -- SX1276 MISO (Pin17) SPI Data Output
#define PIN_SPI_SCK \
GPIO_NUM_5 // ESP32 GPIO5 (Pin5) -- SX1276 SCK (Pin16) SPI Clock Input
// non arduino pin definitions // non arduino pin definitions
#define RST \ #define RST GPIO_NUM_14 // ESP32 GPIO14 (Pin14) -- SX1276 NRESET (Pin7) Reset Trigger Input
GPIO_NUM_14 // ESP32 GPIO14 (Pin14) -- SX1276 NRESET (Pin7) Reset Trigger #define DIO0 GPIO_NUM_26 // ESP32 GPIO26 (Pin15) -- SX1276 DIO0 (Pin8) used by LMIC for detecting LoRa RX_Done & TX_Done
// Input #define DIO1 GPIO_NUM_33 // ESP32 GPIO33 (Pin13) -- SX1276 DIO1 (Pin9) used by LMIC for detecting LoRa RX_Timeout
#define DIO0 \ #define DIO2 LMIC_UNUSED_PIN // 32 ESP32 GPIO32 (Pin12) -- SX1276 DIO2 (Pin10) not used by LMIC for LoRa (Timeout for FSK only)
GPIO_NUM_26 // ESP32 GPIO26 (Pin15) -- SX1276 DIO0 (Pin8) used by LMIC for
// detecting LoRa RX_Done & TX_Done
#define DIO1 \
GPIO_NUM_33 // ESP32 GPIO33 (Pin13) -- SX1276 DIO1 (Pin9) used by LMIC for
// detecting LoRa RX_Timeout
#define DIO2 \
LMIC_UNUSED_PIN // 32 ESP32 GPIO32 (Pin12) -- SX1276 DIO2 (Pin10) not used by
// LMIC for LoRa (Timeout for FSK only)
// Hardware pin definitions for Heltec LoRa-32 Board with OLED SSD1306 I2C // Hardware pin definitions for Heltec LoRa-32 Board with OLED SSD1306 I2C Display
// Display
#define OLED_RST GPIO_NUM_16 // ESP32 GPIO16 (Pin16) -- SD1306 RST #define OLED_RST GPIO_NUM_16 // ESP32 GPIO16 (Pin16) -- SD1306 RST
#define OLED_SDA GPIO_NUM_4 // ESP32 GPIO4 (Pin4) -- SD1306 D1+D2 #define OLED_SDA GPIO_NUM_4 // ESP32 GPIO4 (Pin4) -- SD1306 D1+D2
#define OLED_SCL GPIO_NUM_15 // ESP32 GPIO15 (Pin15) -- SD1306 D0 #define OLED_SCL GPIO_NUM_15 // ESP32 GPIO15 (Pin15) -- SD1306 D0

View File

@ -6,50 +6,33 @@
#define HAS_DISPLAY U8X8_SSD1306_128X64_NONAME_HW_I2C // OLED-Display on board #define HAS_DISPLAY U8X8_SSD1306_128X64_NONAME_HW_I2C // OLED-Display on board
//#define DISPLAY_FLIP 1 // uncomment this for rotated display //#define DISPLAY_FLIP 1 // uncomment this for rotated display
#define HAS_LED \ #define HAS_LED NOT_A_PIN // Led os on same pin as Lora SS pin, to avoid problems, we don't use it
NOT_A_PIN // Led os on same pin as Lora SS pin, to avoid problems, we don't #define LED_ACTIVE_LOW 1 // Onboard LED is active when pin is LOW
// use it // Anyway shield is on over the LoLin32 board, so we won't be able to see this LED
#define LED_ACTIVE_LOW \ #define HAS_RGB_LED 13 // ESP32 GPIO13 (pin13) On Board Shield WS2812B RGB LED
1 // Onboard LED is active when pin is LOW #define HAS_BUTTON 15 // ESP32 GPIO15 (pin15) Button is on the LoraNode32 shield
// Anyway shield is on over the LoLin32 board, so we won't be able to see #define BUTTON_PULLUP 1 // Button need pullup instead of default pulldown
// this LED
#define HAS_RGB_LED 13 // ESP32 GPIO13 (pin13) On Board Shield WS2812B RGB LED
#define HAS_BUTTON 15 // ESP32 GPIO15 (pin15) Button is on the LoraNode32 shield
#define BUTTON_PULLUP 1 // Button need pullup instead of default pulldown
#define CFG_sx1276_radio 1 // RFM95 module #define CFG_sx1276_radio 1 // RFM95 module
// re-define pin definitions of pins_arduino.h // re-define pin definitions of pins_arduino.h
#define PIN_SPI_SS \ #define PIN_SPI_SS 5 // ESP32 GPIO5 (Pin5) -- SX1276 NSS (Pin19) SPI Chip Select Input
5 // ESP32 GPIO5 (Pin5) -- SX1276 NSS (Pin19) SPI Chip Select Input #define PIN_SPI_MOSI 23 // ESP32 GPIO23 (Pin23) -- SX1276 MOSI (Pin18) SPI Data Input
#define PIN_SPI_MOSI \ #define PIN_SPI_MISO 19 // ESP32 GPIO19 (Pin19) -- SX1276 MISO (Pin17) SPI Data Output
23 // ESP32 GPIO23 (Pin23) -- SX1276 MOSI (Pin18) SPI Data Input #define PIN_SPI_SCK 18 // ESP32 GPIO18 (Pin18 -- SX1276 SCK (Pin16) SPI Clock Input
#define PIN_SPI_MISO \
19 // ESP32 GPIO19 (Pin19) -- SX1276 MISO (Pin17) SPI Data Output
#define PIN_SPI_SCK \
18 // ESP32 GPIO18 (Pin18 -- SX1276 SCK (Pin16) SPI Clock Input
// non arduino pin definitions // non arduino pin definitions
#define RST \ #define RST 25 // ESP32 GPIO25 (Pin25) -- SX1276 NRESET (Pin7) Reset Trigger Input
25 // ESP32 GPIO25 (Pin25) -- SX1276 NRESET (Pin7) Reset Trigger Input #define DIO0 27 // ESP32 GPIO27 (Pin27) -- SX1276 DIO0 (Pin8) used by LMIC for detecting LoRa RX_Done & TX_Done
#define DIO0 \ #define DIO1 26 // ESP32 GPIO26 (Pin26) -- SX1276 DIO1 (Pin9) used by LMIC for detecting LoRa RX_Timeout
27 // ESP32 GPIO27 (Pin27) -- SX1276 DIO0 (Pin8) used by LMIC for detecting #define DIO2 LMIC_UNUSED_PIN // 4 ESP32 GPIO4 (Pin4) -- SX1276 DIO2 (Pin10) not used by LMIC for LoRa (Timeout for FSK only)
// LoRa RX_Done & TX_Done #define DIO5 LMIC_UNUSED_PIN // 35 ESP32 GPIO35 (Pin35) -- SX1276 DIO5 not used by LMIC for LoRa (Timeout for FSK only)
#define DIO1 \
26 // ESP32 GPIO26 (Pin26) -- SX1276 DIO1 (Pin9) used by LMIC for detecting
// LoRa RX_Timeout
#define DIO2 \
LMIC_UNUSED_PIN // 4 ESP32 GPIO4 (Pin4) -- SX1276 DIO2 (Pin10) not used by
// LMIC for LoRa (Timeout for FSK only)
#define DIO5 \
LMIC_UNUSED_PIN // 35 ESP32 GPIO35 (Pin35) -- SX1276 DIO5 not used by LMIC
// for LoRa (Timeout for FSK only)
// Hardware pin definitions for LoRaNode32 Board with OLED I2C Display // Hardware pin definitions for LoRaNode32 Board with OLED I2C Display
#define OLED_RST U8X8_PIN_NONE // Not reset pin #define OLED_RST U8X8_PIN_NONE // Not reset pin
#define OLED_SDA 21 // ESP32 GPIO21 (Pin21) -- OLED SDA #define OLED_SDA 21 // ESP32 GPIO21 (Pin21) -- OLED SDA
#define OLED_SCL 22 // ESP32 GPIO22 (Pin22) -- OLED SCL #define OLED_SCL 22 // ESP32 GPIO22 (Pin22) -- OLED SCL
// I2C config for Microchip 24AA02E64 DEVEUI unique address // I2C config for Microchip 24AA02E64 DEVEUI unique address
#define MCP_24AA02E64_I2C_ADDRESS 0x50 // I2C address for the 24AA02E64 #define MCP_24AA02E64_I2C_ADDRESS 0x50 // I2C address for the 24AA02E64
#define MCP_24AA02E64_MAC_ADDRESS 0xF8 // Memory adress of unique deveui 64 bits #define MCP_24AA02E64_MAC_ADDRESS 0xF8 // Memory adress of unique deveui 64 bits

View File

@ -6,45 +6,32 @@
#define HAS_DISPLAY U8X8_SSD1306_128X64_NONAME_HW_I2C // OLED-Display on board #define HAS_DISPLAY U8X8_SSD1306_128X64_NONAME_HW_I2C // OLED-Display on board
//#define DISPLAY_FLIP 1 // uncomment this for rotated display //#define DISPLAY_FLIP 1 // uncomment this for rotated display
#define HAS_LED 22 // ESP32 GPIO12 (pin22) On Board LED #define HAS_LED 22 // ESP32 GPIO12 (pin22) On Board LED
#define LED_ACTIVE_LOW 1 // Onboard LED is active when pin is LOW #define LED_ACTIVE_LOW 1 // Onboard LED is active when pin is LOW
#define HAS_RGB_LED 13 // ESP32 GPIO13 (pin13) On Board Shield WS2812B RGB LED #define HAS_RGB_LED 13 // ESP32 GPIO13 (pin13) On Board Shield WS2812B RGB LED
#define HAS_BUTTON 15 // ESP32 GPIO15 (pin15) Button is on the LoraNode32 shield #define HAS_BUTTON 15 // ESP32 GPIO15 (pin15) Button is on the LoraNode32 shield
#define BUTTON_PULLUP 1 // Button need pullup instead of default pulldown #define BUTTON_PULLUP 1 // Button need pullup instead of default pulldown
#define CFG_sx1276_radio 1 // RFM95 module #define CFG_sx1276_radio 1 // RFM95 module
// re-define pin definitions of pins_arduino.h // re-define pin definitions of pins_arduino.h
#define PIN_SPI_SS \ #define PIN_SPI_SS 5 // ESP32 GPIO5 (Pin5) -- SX1276 NSS (Pin19) SPI Chip Select Input
5 // ESP32 GPIO5 (Pin5) -- SX1276 NSS (Pin19) SPI Chip Select Input #define PIN_SPI_MOSI 23 // ESP32 GPIO23 (Pin23) -- SX1276 MOSI (Pin18) SPI Data Input
#define PIN_SPI_MOSI \ #define PIN_SPI_MISO 19 // ESP32 GPIO19 (Pin19) -- SX1276 MISO (Pin17) SPI Data Output
23 // ESP32 GPIO23 (Pin23) -- SX1276 MOSI (Pin18) SPI Data Input #define PIN_SPI_SCK 18 // ESP32 GPIO18 (Pin18 -- SX1276 SCK (Pin16) SPI Clock Input
#define PIN_SPI_MISO \
19 // ESP32 GPIO19 (Pin19) -- SX1276 MISO (Pin17) SPI Data Output
#define PIN_SPI_SCK \
18 // ESP32 GPIO18 (Pin18 -- SX1276 SCK (Pin16) SPI Clock Input
// non arduino pin definitions // non arduino pin definitions
#define RST \ #define RST 25 // ESP32 GPIO25 (Pin25) -- SX1276 NRESET (Pin7) Reset Trigger Input
25 // ESP32 GPIO25 (Pin25) -- SX1276 NRESET (Pin7) Reset Trigger Input #define DIO0 27 // ESP32 GPIO27 (Pin27) -- SX1276 DIO0 (Pin8) used by LMIC for detecting LoRa RX_Done & TX_Done
#define DIO0 \ #define DIO1 26 // ESP32 GPIO26 (Pin26) -- SX1276 DIO1 (Pin9) used by LMIC for detecting LoRa RX_Timeout
27 // ESP32 GPIO27 (Pin27) -- SX1276 DIO0 (Pin8) used by LMIC for detecting #define DIO2 LMIC_UNUSED_PIN // 4 ESP32 GPIO4 (Pin4) -- SX1276 DIO2 (Pin10) not used by LMIC for LoRa (Timeout for FSK only)
// LoRa RX_Done & TX_Done #define DIO5 LMIC_UNUSED_PIN // 35 ESP32 GPIO35 (Pin35) -- SX1276 DIO5 not used by LMIC for LoRa (Timeout for FSK only)
#define DIO1 \
26 // ESP32 GPIO26 (Pin26) -- SX1276 DIO1 (Pin9) used by LMIC for detecting
// LoRa RX_Timeout
#define DIO2 \
LMIC_UNUSED_PIN // 4 ESP32 GPIO4 (Pin4) -- SX1276 DIO2 (Pin10) not used by
// LMIC for LoRa (Timeout for FSK only)
#define DIO5 \
LMIC_UNUSED_PIN // 35 ESP32 GPIO35 (Pin35) -- SX1276 DIO5 not used by LMIC
// for LoRa (Timeout for FSK only)
// Hardware pin definitions for LoRaNode32 Board with OLED I2C Display // Hardware pin definitions for LoRaNode32 Board with OLED I2C Display
#define OLED_RST U8X8_PIN_NONE // Not reset pin #define OLED_RST U8X8_PIN_NONE // Not reset pin
#define OLED_SDA 14 // ESP32 GPIO14 (Pin14) -- OLED SDA #define OLED_SDA 14 // ESP32 GPIO14 (Pin14) -- OLED SDA
#define OLED_SCL 12 // ESP32 GPIO12 (Pin12) -- OLED SCL #define OLED_SCL 12 // ESP32 GPIO12 (Pin12) -- OLED SCL
// I2C config for Microchip 24AA02E64 DEVEUI unique address // I2C config for Microchip 24AA02E64 DEVEUI unique address
#define MCP_24AA02E64_I2C_ADDRESS 0x50 // I2C address for the 24AA02E64 #define MCP_24AA02E64_I2C_ADDRESS 0x50 // I2C address for the 24AA02E64
#define MCP_24AA02E64_MAC_ADDRESS 0xF8 // Memory adress of unique deveui 64 bits #define MCP_24AA02E64_MAC_ADDRESS 0xF8 // Memory adress of unique deveui 64 bits

View File

@ -1,14 +1,12 @@
// Hardware related definitions for Pycom LoPy Board (not: LoPy4) // Hardware related definitions for Pycom LoPy Board (not: LoPy4)
#define CFG_sx1272_radio 1 #define CFG_sx1272_radio 1
#define HAS_LED \ #define HAS_LED NOT_A_PIN // LoPy4 has no on board LED, so we use RGB LED on LoPy4
NOT_A_PIN // LoPy4 has no on board LED, so we use RGB LED on LoPy4 #define HAS_RGB_LED GPIO_NUM_0 // WS2812B RGB LED on GPIO0
#define HAS_RGB_LED GPIO_NUM_0 // WS2812B RGB LED on GPIO0
// !!EXPERIMENTAL - not tested yet!! // !!EXPERIMENTAL - not tested yet!!
// uncomment this only if your LoPy lives on a Pytrack expansion board with GPS // uncomment this only if your LoPy lives on a Pytrack expansion board with GPS
// see // see http://www.quectel.com/UploadImage/Downlad/Quectel_L76-L_I2C_Application_Note_V1.0.pdf
// http://www.quectel.com/UploadImage/Downlad/Quectel_L76-L_I2C_Application_Note_V1.0.pdf
//#define HAS_GPS 1 //#define HAS_GPS 1
//#define GPS_I2C_PINS GPIO_NUM_9, GPIO_NUM_8 // SDA, SCL //#define GPS_I2C_PINS GPIO_NUM_9, GPIO_NUM_8 // SDA, SCL
//#define GPS_I2C_ADDRESS_READ 0x21 //#define GPS_I2C_ADDRESS_READ 0x21
@ -16,15 +14,15 @@
//#define HAS_BUTTON GPIO_NUM_4 //#define HAS_BUTTON GPIO_NUM_4
// Hardware pin definitions for Pycom LoPy board // Hardware pin definitions for Pycom LoPy board
#define PIN_SPI_SS GPIO_NUM_17 #define PIN_SPI_SS GPIO_NUM_17
#define PIN_SPI_MOSI GPIO_NUM_27 #define PIN_SPI_MOSI GPIO_NUM_27
#define PIN_SPI_MISO GPIO_NUM_19 #define PIN_SPI_MISO GPIO_NUM_19
#define PIN_SPI_SCK GPIO_NUM_5 #define PIN_SPI_SCK GPIO_NUM_5
#define RST GPIO_NUM_18 #define RST GPIO_NUM_18
#define DIO0 GPIO_NUM_23 // LoRa IRQ #define DIO0 GPIO_NUM_23 // LoRa IRQ
#define DIO1 GPIO_NUM_23 // workaround #define DIO1 GPIO_NUM_23 // workaround
#define DIO2 LMIC_UNUSED_PIN #define DIO2 LMIC_UNUSED_PIN
// select WIFI antenna (internal = onboard / external = u.fl socket) // select WIFI antenna (internal = onboard / external = u.fl socket)
#define HAS_ANTENNA_SWITCH 16 // pin for switching wifi antenna #define HAS_ANTENNA_SWITCH 16 // pin for switching wifi antenna
#define WIFI_ANTENNA 0 // 0 = internal, 1 = external #define WIFI_ANTENNA 0 // 0 = internal, 1 = external

View File

@ -1,14 +1,12 @@
// Hardware related definitions for Pycom LoPy Board (not: LoPy4) // Hardware related definitions for Pycom LoPy Board (not: LoPy4)
#define CFG_sx1276_radio 1 #define CFG_sx1276_radio 1
#define HAS_LED \ #define HAS_LED NOT_A_PIN // LoPy4 has no on board LED, so we use RGB LED on LoPy4
NOT_A_PIN // LoPy4 has no on board LED, so we use RGB LED on LoPy4 #define HAS_RGB_LED GPIO_NUM_0 // WS2812B RGB LED on GPIO0
#define HAS_RGB_LED GPIO_NUM_0 // WS2812B RGB LED on GPIO0
// !!EXPERIMENTAL - not tested yet!!f // !!EXPERIMENTAL - not tested yet!!f
// uncomment this only if your LoPy lives on a Pytrack expansion board with GPS // uncomment this only if your LoPy lives on a Pytrack expansion board with GPS
// see // see http://www.quectel.com/UploadImage/Downlad/Quectel_L76-L_I2C_Application_Note_V1.0.pdf
// http://www.quectel.com/UploadImage/Downlad/Quectel_L76-L_I2C_Application_Note_V1.0.pdf
//#define HAS_GPS 1 //#define HAS_GPS 1
//#define GPS_I2C_PINS GPIO_NUM_9, GPIO_NUM_8 // SDA, SCL //#define GPS_I2C_PINS GPIO_NUM_9, GPIO_NUM_8 // SDA, SCL
//#define GPS_I2C_ADDRESS_READ 0x21 //#define GPS_I2C_ADDRESS_READ 0x21
@ -16,15 +14,15 @@
//#define HAS_BUTTON GPIO_NUM_4 //#define HAS_BUTTON GPIO_NUM_4
// Hardware pin definitions for Pycom LoPy4 board // Hardware pin definitions for Pycom LoPy4 board
#define PIN_SPI_SS GPIO_NUM_18 #define PIN_SPI_SS GPIO_NUM_18
#define PIN_SPI_MOSI GPIO_NUM_27 #define PIN_SPI_MOSI GPIO_NUM_27
#define PIN_SPI_MISO GPIO_NUM_19 #define PIN_SPI_MISO GPIO_NUM_19
#define PIN_SPI_SCK GPIO_NUM_5 #define PIN_SPI_SCK GPIO_NUM_5
#define RST LMIC_UNUSED_PIN #define RST LMIC_UNUSED_PIN
#define DIO0 GPIO_NUM_23 // LoRa IRQ #define DIO0 GPIO_NUM_23 // LoRa IRQ
#define DIO1 GPIO_NUM_23 // workaround #define DIO1 GPIO_NUM_23 // workaround
#define DIO2 LMIC_UNUSED_PIN #define DIO2 LMIC_UNUSED_PIN
// select WIFI antenna (internal = onboard / external = u.fl socket) // select WIFI antenna (internal = onboard / external = u.fl socket)
#define HAS_ANTENNA_SWITCH 21 // pin for switching wifi antenna #define HAS_ANTENNA_SWITCH 21 // pin for switching wifi antenna
#define WIFI_ANTENNA 0 // 0 = internal, 1 = external #define WIFI_ANTENNA 0 // 0 = internal, 1 = external

View File

@ -3,26 +3,17 @@
#define CFG_sx1276_radio 1 // HPD13A LoRa SoC #define CFG_sx1276_radio 1 // HPD13A LoRa SoC
#define HAS_LED GPIO_NUM_21 // on board green LED_G1 #define HAS_LED GPIO_NUM_21 // on board green LED_G1
//#define HAS_BUTTON GPIO_NUM_39 // on board button "BOOT" (next to reset //#define HAS_BUTTON GPIO_NUM_39 // on board button "BOOT" (next to reset button) !! seems not to work!!
// button) !! seems not to work!! #define HAS_BATTERY_PROBE ADC1_GPIO35_CHANNEL // battery probe GPIO pin -> ADC1_CHANNEL_7
#define HAS_BATTERY_PROBE \
ADC1_GPIO35_CHANNEL // battery probe GPIO pin -> ADC1_CHANNEL_7
#define BATT_FACTOR 2 // voltage divider 100k/100k on board #define BATT_FACTOR 2 // voltage divider 100k/100k on board
#define HAS_GPS 1 // use on board GPS #define HAS_GPS 1 // use on board GPS
#define GPS_SERIAL \ #define GPS_SERIAL 9600, SERIAL_8N1, GPIO_NUM_12, GPIO_NUM_15 // UBlox NEO 6M or 7M with default configuration
9600, SERIAL_8N1, GPIO_NUM_12, \
GPIO_NUM_15 // UBlox NEO 6M or 7M with default configuration
// re-define pin definitions of pins_arduino.h // re-define pin definitions of pins_arduino.h
#define PIN_SPI_SS \ #define PIN_SPI_SS GPIO_NUM_18 // ESP32 GPIO18 (Pin18) -- HPD13A NSS/SEL (Pin4) SPI Chip Select Input
GPIO_NUM_18 // ESP32 GPIO18 (Pin18) -- HPD13A NSS/SEL (Pin4) SPI Chip Select #define PIN_SPI_MOSI GPIO_NUM_27 // ESP32 GPIO27 (Pin27) -- HPD13A MOSI/DSI (Pin6) SPI Data Input
// Input #define PIN_SPI_MISO GPIO_NUM_19 // ESP32 GPIO19 (Pin19) -- HPD13A MISO/DSO (Pin7) SPI Data Output
#define PIN_SPI_MOSI \ #define PIN_SPI_SCK GPIO_NUM_5 // ESP32 GPIO5 (Pin5) -- HPD13A SCK (Pin5) SPI Clock Input
GPIO_NUM_27 // ESP32 GPIO27 (Pin27) -- HPD13A MOSI/DSI (Pin6) SPI Data Input
#define PIN_SPI_MISO \
GPIO_NUM_19 // ESP32 GPIO19 (Pin19) -- HPD13A MISO/DSO (Pin7) SPI Data Output
#define PIN_SPI_SCK \
GPIO_NUM_5 // ESP32 GPIO5 (Pin5) -- HPD13A SCK (Pin5) SPI Clock Input
// non arduino pin definitions // non arduino pin definitions
#define RST LMIC_UNUSED_PIN // connected to ESP32 RST/EN #define RST LMIC_UNUSED_PIN // connected to ESP32 RST/EN

View File

@ -4,34 +4,21 @@
#define HAS_DISPLAY U8X8_SSD1306_128X64_NONAME_HW_I2C // OLED-Display on board #define HAS_DISPLAY U8X8_SSD1306_128X64_NONAME_HW_I2C // OLED-Display on board
//#define DISPLAY_FLIP 1 // uncomment this for rotated display //#define DISPLAY_FLIP 1 // uncomment this for rotated display
#define HAS_LED GPIO_NUM_2 // white LED on board #define HAS_LED GPIO_NUM_2 // white LED on board
#define LED_ACTIVE_LOW 1 // Onboard LED is active when pin is LOW #define LED_ACTIVE_LOW 1 // Onboard LED is active when pin is LOW
#define HAS_BUTTON GPIO_NUM_0 // button "PRG" on board #define HAS_BUTTON GPIO_NUM_0 // button "PRG" on board
// re-define pin definitions of pins_arduino.h // re-define pin definitions of pins_arduino.h
#define PIN_SPI_SS \ #define PIN_SPI_SS GPIO_NUM_18 // ESP32 GPIO18 (Pin18) -- SX1276 NSS (Pin19) SPI Chip Select Input
GPIO_NUM_18 // ESP32 GPIO18 (Pin18) -- SX1276 NSS (Pin19) SPI Chip Select #define PIN_SPI_MOSI GPIO_NUM_27 // ESP32 GPIO27 (Pin27) -- SX1276 MOSI (Pin18) SPI Data Input
// Input #define PIN_SPI_MISO GPIO_NUM_19 // ESP32 GPIO19 (Pin19) -- SX1276 MISO (Pin17) SPI Data Output
#define PIN_SPI_MOSI \ #define PIN_SPI_SCK GPIO_NUM_5 // ESP32 GPIO5 (Pin5) -- SX1276 SCK (Pin16) SPI Clock Input
GPIO_NUM_27 // ESP32 GPIO27 (Pin27) -- SX1276 MOSI (Pin18) SPI Data Input
#define PIN_SPI_MISO \
GPIO_NUM_19 // ESP32 GPIO19 (Pin19) -- SX1276 MISO (Pin17) SPI Data Output
#define PIN_SPI_SCK \
GPIO_NUM_5 // ESP32 GPIO5 (Pin5) -- SX1276 SCK (Pin16) SPI Clock Input
// non arduino pin definitions // non arduino pin definitions
#define RST \ #define RST GPIO_NUM_14 // ESP32 GPIO14 (Pin14) -- SX1276 NRESET (Pin7) Reset Trigger Input
GPIO_NUM_14 // ESP32 GPIO14 (Pin14) -- SX1276 NRESET (Pin7) Reset Trigger #define DIO0 GPIO_NUM_26 // ESP32 GPIO26 (Pin15) -- SX1276 DIO0 (Pin8) used by LMIC for detecting LoRa RX_Done & TX_Done
// Input #define DIO1 GPIO_NUM_33 // ESP32 GPIO33 (Pin13) -- SX1276 DIO1 (Pin9) used by LMIC for detecting LoRa RX_Timeout
#define DIO0 \ #define DIO2 LMIC_UNUSED_PIN // 32 ESP32 GPIO32 (Pin12) -- SX1276 DIO2 (Pin10) not used by LMIC for LoRa (Timeout for FSK only)
GPIO_NUM_26 // ESP32 GPIO26 (Pin15) -- SX1276 DIO0 (Pin8) used by LMIC for
// detecting LoRa RX_Done & TX_Done
#define DIO1 \
GPIO_NUM_33 // ESP32 GPIO33 (Pin13) -- SX1276 DIO1 (Pin9) used by LMIC for
// detecting LoRa RX_Timeout
#define DIO2 \
LMIC_UNUSED_PIN // 32 ESP32 GPIO32 (Pin12) -- SX1276 DIO2 (Pin10) not used by
// LMIC for LoRa (Timeout for FSK only)
// Hardware pin definitions for TTGOv1 Board with OLED SSD1306 I2C Display // Hardware pin definitions for TTGOv1 Board with OLED SSD1306 I2C Display
#define OLED_RST GPIO_NUM_16 // ESP32 GPIO16 (Pin16) -- SD1306 Reset #define OLED_RST GPIO_NUM_16 // ESP32 GPIO16 (Pin16) -- SD1306 Reset

View File

@ -4,37 +4,28 @@
#define HAS_DISPLAY U8X8_SSD1306_128X64_NONAME_HW_I2C #define HAS_DISPLAY U8X8_SSD1306_128X64_NONAME_HW_I2C
//#define DISPLAY_FLIP 1 // uncomment this for rotated display //#define DISPLAY_FLIP 1 // uncomment this for rotated display
#define HAS_LED \ #define HAS_LED NOT_A_PIN // on-board LED is wired to SCL (used by display) therefore totally useless
NOT_A_PIN // on-board LED is wired to SCL (used by display) therefore totally
// useless
// disable brownout detection (needed on TTGOv2 for battery powered operation) // disable brownout detection (needed on TTGOv2 for battery powered operation)
#define DISABLE_BROWNOUT 1 // comment out if you want to keep brownout feature #define DISABLE_BROWNOUT 1 // comment out if you want to keep brownout feature
// re-define pin definitions of pins_arduino.h // re-define pin definitions of pins_arduino.h
#define PIN_SPI_SS \ #define PIN_SPI_SS GPIO_NUM_18 // ESP32 GPIO18 (Pin18) -- HPD13A NSS/SEL (Pin4) SPI Chip Select Input
GPIO_NUM_18 // ESP32 GPIO18 (Pin18) -- HPD13A NSS/SEL (Pin4) SPI Chip Select #define PIN_SPI_MOSI GPIO_NUM_27 // ESP32 GPIO27 (Pin27) -- HPD13A MOSI/DSI (Pin6) SPI Data Input
// Input #define PIN_SPI_MISO GPIO_NUM_19 // ESP32 GPIO19 (Pin19) -- HPD13A MISO/DSO (Pin7) SPI Data Output
#define PIN_SPI_MOSI \ #define PIN_SPI_SCK GPIO_NUM_5 // ESP32 GPIO5 (Pin5) -- HPD13A SCK (Pin5) SPI Clock Input
GPIO_NUM_27 // ESP32 GPIO27 (Pin27) -- HPD13A MOSI/DSI (Pin6) SPI Data Input
#define PIN_SPI_MISO \
GPIO_NUM_19 // ESP32 GPIO19 (Pin19) -- HPD13A MISO/DSO (Pin7) SPI Data Output
#define PIN_SPI_SCK \
GPIO_NUM_5 // ESP32 GPIO5 (Pin5) -- HPD13A SCK (Pin5) SPI Clock Input
// non arduino pin definitions // non arduino pin definitions
#define RST LMIC_UNUSED_PIN // connected to ESP32 RST/EN #define RST LMIC_UNUSED_PIN // connected to ESP32 RST/EN
#define DIO0 GPIO_NUM_26 // ESP32 GPIO26 wired on PCB to HPD13A #define DIO0 GPIO_NUM_26 // ESP32 GPIO26 wired on PCB to HPD13A
#define DIO1 GPIO_NUM_33 // HPDIO1 on pcb, needs to be wired external to GPIO33 #define DIO1 GPIO_NUM_33 // HPDIO1 on pcb, needs to be wired external to GPIO33
#define DIO2 \ #define DIO2 LMIC_UNUSED_PIN // 32 HPDIO2 on pcb, needs to be wired external to GPIO32 (not necessary for LoRa, only FSK)
LMIC_UNUSED_PIN // 32 HPDIO2 on pcb, needs to be wired external to GPIO32 (not
// necessary for LoRa, only FSK)
// Hardware pin definitions for TTGO V2 Board with OLED SSD1306 0,96" I2C // Hardware pin definitions for TTGO V2 Board with OLED SSD1306 0,96" I2C Display
// Display
#define OLED_RST U8X8_PIN_NONE // connected to CPU RST/EN #define OLED_RST U8X8_PIN_NONE // connected to CPU RST/EN
#define OLED_SDA GPIO_NUM_21 // ESP32 GPIO4 (Pin4) -- SD1306 D1+D2 #define OLED_SDA GPIO_NUM_21 // ESP32 GPIO4 (Pin4) -- SD1306 D1+D2
#define OLED_SCL GPIO_NUM_22 // ESP32 GPIO15 (Pin15) -- SD1306 D0 #define OLED_SCL GPIO_NUM_22 // ESP32 GPIO15 (Pin15) -- SD1306 D0
/* /*
ESP32 LoRa module (SPI) OLED display (I2C) ESP32 LoRa module (SPI) OLED display (I2C)
@ -57,6 +48,6 @@
{2} Must be manually wired! {2} Must be manually wired!
DIO2 is wired to a separate pin but is not wired on-board to pin/GPIO32. DIO2 is wired to a separate pin but is not wired on-board to pin/GPIO32.
Explicitly wire board pin labeled DIO2 to pin 32 (see TTGO V2.0 pinout). Explicitly wire board pin labeled DIO2 to pin 32 (see TTGO V2.0 pinout).
{3} The on-board LED is wired to SCL (used by display) therefore totally {3} The on-board LED is wired to SCL (used by display) therefore totally useless!
useless!
*/ */

View File

@ -3,32 +3,24 @@
#define CFG_sx1276_radio 1 // HPD13A LoRa SoC #define CFG_sx1276_radio 1 // HPD13A LoRa SoC
#define HAS_DISPLAY U8X8_SSD1306_128X64_NONAME_HW_I2C #define HAS_DISPLAY U8X8_SSD1306_128X64_NONAME_HW_I2C
#define DISPLAY_FLIP 1 // rotated display #define DISPLAY_FLIP 1 // rotated display
#define HAS_LED \ #define HAS_LED GPIO_NUM_23 // green on board LED_G3 (not in initial board version)
GPIO_NUM_23 // green on board LED_G3 (not in initial board version) #define HAS_BATTERY_PROBE ADC1_GPIO35_CHANNEL // battery probe GPIO pin -> ADC1_CHANNEL_7
#define HAS_BATTERY_PROBE \
ADC1_GPIO35_CHANNEL // battery probe GPIO pin -> ADC1_CHANNEL_7
#define BATT_FACTOR 2 // voltage divider 100k/100k on board #define BATT_FACTOR 2 // voltage divider 100k/100k on board
// re-define pin definitions of pins_arduino.h // re-define pin definitions of pins_arduino.h
#define PIN_SPI_SS \ #define PIN_SPI_SS GPIO_NUM_18 // ESP32 GPIO18 (Pin18) -- HPD13A NSS/SEL (Pin4) SPI Chip Select Input
GPIO_NUM_18 // ESP32 GPIO18 (Pin18) -- HPD13A NSS/SEL (Pin4) SPI Chip Select #define PIN_SPI_MOSI GPIO_NUM_27 // ESP32 GPIO27 (Pin27) -- HPD13A MOSI/DSI (Pin6) SPI Data Input
// Input #define PIN_SPI_MISO GPIO_NUM_19 // ESP32 GPIO19 (Pin19) -- HPD13A MISO/DSO (Pin7) SPI Data Output
#define PIN_SPI_MOSI \ #define PIN_SPI_SCK GPIO_NUM_5 // ESP32 GPIO5 (Pin5) -- HPD13A SCK (Pin5) SPI Clock Input
GPIO_NUM_27 // ESP32 GPIO27 (Pin27) -- HPD13A MOSI/DSI (Pin6) SPI Data Input
#define PIN_SPI_MISO \
GPIO_NUM_19 // ESP32 GPIO19 (Pin19) -- HPD13A MISO/DSO (Pin7) SPI Data Output
#define PIN_SPI_SCK \
GPIO_NUM_5 // ESP32 GPIO5 (Pin5) -- HPD13A SCK (Pin5) SPI Clock Input
// non arduino pin definitions // non arduino pin definitions
#define RST LMIC_UNUSED_PIN // connected to ESP32 RST/EN #define RST LMIC_UNUSED_PIN // connected to ESP32 RST/EN
#define DIO0 GPIO_NUM_26 // ESP32 GPIO26 <-> HPD13A IO0 #define DIO0 GPIO_NUM_26 // ESP32 GPIO26 <-> HPD13A IO0
#define DIO1 GPIO_NUM_33 // ESP32 GPIO33 <-> HPDIO1 <-> HPD13A IO1 #define DIO1 GPIO_NUM_33 // ESP32 GPIO33 <-> HPDIO1 <-> HPD13A IO1
#define DIO2 GPIO_NUM_32 // ESP32 GPIO32 <-> HPDIO2 <-> HPD13A IO2 #define DIO2 GPIO_NUM_32 // ESP32 GPIO32 <-> HPDIO2 <-> HPD13A IO2
// Hardware pin definitions for TTGO V2 Board with OLED SSD1306 0,96" I2C // Hardware pin definitions for TTGO V2 Board with OLED SSD1306 0,96" I2C Display
// Display
#define OLED_RST U8X8_PIN_NONE // connected to CPU RST/EN #define OLED_RST U8X8_PIN_NONE // connected to CPU RST/EN
#define OLED_SDA GPIO_NUM_21 // ESP32 GPIO4 (Pin4) -- SD1306 D1+D2 #define OLED_SDA GPIO_NUM_21 // ESP32 GPIO4 (Pin4) -- SD1306 D1+D2
#define OLED_SCL GPIO_NUM_22 // ESP32 GPIO15 (Pin15) -- SD1306 D0 #define OLED_SCL GPIO_NUM_22 // ESP32 GPIO15 (Pin15) -- SD1306 D0

View File

@ -1,31 +1,28 @@
/************************************************************ /************************************************************
* LMIC LoRaWAN configuration * LMIC LoRaWAN configuration
* *
* Read the values from TTN console (or whatever applies), insert them here, * Read the values from TTN console (or whatever applies), insert them here,
* and rename this file to src/loraconf.h * and rename this file to src/loraconf.h
* *
* Note that DEVEUI, APPEUI and APPKEY should all be specified in MSB format. * Note that DEVEUI, APPEUI and APPKEY should all be specified in MSB format.
* (This is different from standard LMIC-Arduino which expects DEVEUI and APPEUI * (This is different from standard LMIC-Arduino which expects DEVEUI and APPEUI in LSB format.)
in LSB format.)
* Set your DEVEUI here, if you have one. You can leave this untouched, * Set your DEVEUI here, if you have one. You can leave this untouched,
* then the DEVEUI will be generated during runtime from device's MAC adress * then the DEVEUI will be generated during runtime from device's MAC adress
* and will be displayed on device's screen as well as on serial console. * and will be displayed on device's screen as well as on serial console.
* *
* NOTE: Use MSB format (as displayed in TTN console, so you can cut & paste * NOTE: Use MSB format (as displayed in TTN console, so you can cut & paste from there)
from there)
* For TTN, APPEUI in MSB format always starts with 0x70, 0xB3, 0xD5 * For TTN, APPEUI in MSB format always starts with 0x70, 0xB3, 0xD5
* *
* Note: If using a board with Microchip 24AA02E64 Uinique ID for deveui, * Note: If using a board with Microchip 24AA02E64 Uinique ID for deveui,
* the DEVEUI will be overwriten by the one contained in the Microchip module * the DEVEUI will be overwriten by the one contained in the Microchip module
* *
************************************************************/ ************************************************************/
#include <Arduino.h> #include <Arduino.h>
static const u1_t DEVEUI[8] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}; static const u1_t DEVEUI[8]={ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
static const u1_t APPEUI[8] = {0x70, 0xB3, 0xD5, 0x00, 0x00, 0x00, 0x00, 0x00}; static const u1_t APPEUI[8]={ 0x70, 0xB3, 0xD5, 0x00, 0x00, 0x00, 0x00, 0x00 };
static const u1_t APPKEY[16] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, static const u1_t APPKEY[16] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};

View File

@ -3,11 +3,11 @@
// LMIC-Arduino LoRaWAN Stack // LMIC-Arduino LoRaWAN Stack
#include "loraconf.h" #include "loraconf.h"
#include <hal/hal.h>
#include <lmic.h> #include <lmic.h>
#include <hal/hal.h>
#ifdef MCP_24AA02E64_I2C_ADDRESS #ifdef MCP_24AA02E64_I2C_ADDRESS
#include <Wire.h> // Needed for 24AA02E64, does not hurt anything if included and not used #include <Wire.h> // Needed for 24AA02E64, does not hurt anything if included and not used
#endif #endif
// Local logging Tag // Local logging Tag
@ -19,88 +19,88 @@ void switch_lora(uint8_t sf, uint8_t tx);
// DevEUI generator using devices's MAC address // DevEUI generator using devices's MAC address
void gen_lora_deveui(uint8_t *pdeveui) { void gen_lora_deveui(uint8_t *pdeveui) {
uint8_t *p = pdeveui, dmac[6]; uint8_t *p = pdeveui, dmac[6];
int i = 0; int i = 0;
esp_efuse_mac_get_default(dmac); esp_efuse_mac_get_default(dmac);
// deveui is LSB, we reverse it so TTN DEVEUI display // deveui is LSB, we reverse it so TTN DEVEUI display
// will remain the same as MAC address // will remain the same as MAC address
// MAC is 6 bytes, devEUI 8, set first 2 ones // MAC is 6 bytes, devEUI 8, set first 2 ones
// with an arbitrary value // with an arbitrary value
*p++ = 0xFF; *p++ = 0xFF;
*p++ = 0xFE; *p++ = 0xFE;
// Then next 6 bytes are mac address reversed // Then next 6 bytes are mac address reversed
for (i = 0; i < 6; i++) { for ( i=0; i<6 ; i++) {
*p++ = dmac[5 - i]; *p++ = dmac[5-i];
} }
} }
// Function to do a byte swap in a byte array // Function to do a byte swap in a byte array
void RevBytes(unsigned char *b, size_t c) { void RevBytes(unsigned char* b, size_t c)
{
u1_t i; u1_t i;
for (i = 0; i < c / 2; i++) { for (i = 0; i < c / 2; i++)
unsigned char t = b[i]; { unsigned char t = b[i];
b[i] = b[c - 1 - i]; b[i] = b[c - 1 - i];
b[c - 1 - i] = t; b[c - 1 - i] = t; }
}
} }
void get_hard_deveui(uint8_t *pdeveui) { void get_hard_deveui(uint8_t *pdeveui) {
// read DEVEUI from Microchip 24AA02E64 2Kb serial eeprom if present // read DEVEUI from Microchip 24AA02E64 2Kb serial eeprom if present
#ifdef MCP_24AA02E64_I2C_ADDRESS #ifdef MCP_24AA02E64_I2C_ADDRESS
uint8_t i2c_ret; uint8_t i2c_ret;
// Init this just in case, no more to 100KHz // Init this just in case, no more to 100KHz
Wire.begin(OLED_SDA, OLED_SCL, 100000); Wire.begin(OLED_SDA, OLED_SCL, 100000);
Wire.beginTransmission(MCP_24AA02E64_I2C_ADDRESS);
Wire.write(MCP_24AA02E64_MAC_ADDRESS);
i2c_ret = Wire.endTransmission();
// check if device seen on i2c bus
if (i2c_ret == 0) {
char deveui[32] = "";
uint8_t data;
Wire.beginTransmission(MCP_24AA02E64_I2C_ADDRESS); Wire.beginTransmission(MCP_24AA02E64_I2C_ADDRESS);
Wire.write(MCP_24AA02E64_MAC_ADDRESS); Wire.write(MCP_24AA02E64_MAC_ADDRESS);
Wire.requestFrom(MCP_24AA02E64_I2C_ADDRESS, 8);
while (Wire.available()) {
data = Wire.read();
sprintf(deveui + strlen(deveui), "%02X ", data);
*pdeveui++ = data;
}
i2c_ret = Wire.endTransmission(); i2c_ret = Wire.endTransmission();
ESP_LOGI(TAG, "Serial EEPROM 24AA02E64 found, read DEVEUI %s", deveui); // check if device seen on i2c bus
} else { if (i2c_ret == 0) {
ESP_LOGI(TAG, "Serial EEPROM 24AA02E64 not found ret=%d", i2c_ret); char deveui[32]="";
} uint8_t data;
// Set back to 400KHz to speed up OLED Wire.beginTransmission(MCP_24AA02E64_I2C_ADDRESS);
Wire.setClock(400000); Wire.write(MCP_24AA02E64_MAC_ADDRESS);
#endif // MCP 24AA02E64 Wire.requestFrom(MCP_24AA02E64_I2C_ADDRESS, 8);
while (Wire.available()) {
data = Wire.read();
sprintf(deveui+strlen(deveui), "%02X ", data);
*pdeveui++ = data;
}
i2c_ret = Wire.endTransmission();
ESP_LOGI(TAG, "Serial EEPROM 24AA02E64 found, read DEVEUI %s", deveui);
} else {
ESP_LOGI(TAG, "Serial EEPROM 24AA02E64 not found ret=%d", i2c_ret);
}
// Set back to 400KHz to speed up OLED
Wire.setClock(400000);
#endif // MCP 24AA02E64
} }
#ifdef VERBOSE #ifdef VERBOSE
// Display a key // Display a key
void printKey(const char *name, const uint8_t *key, uint8_t len, bool lsb) { void printKey(const char * name, const uint8_t * key, uint8_t len, bool lsb) {
const uint8_t *p; const uint8_t * p ;
char keystring[len + 1] = "", keybyte[3]; char keystring[len+1] = "", keybyte[3];
for (uint8_t i = 0; i < len; i++) { for (uint8_t i=0; i<len ; i++) {
p = lsb ? key + len - i - 1 : key + i; p = lsb ? key+len-i-1 : key+i;
sprintf(keybyte, "%02X", *p); sprintf(keybyte, "%02X", * p);
strncat(keystring, keybyte, 2); strncat(keystring, keybyte, 2);
} }
ESP_LOGI(TAG, "%s: %s", name, keystring); ESP_LOGI(TAG, "%s: %s", name, keystring);
} }
// Display OTAA keys // Display OTAA keys
void printKeys(void) { void printKeys(void) {
// LMIC may not have used callback to fill // LMIC may not have used callback to fill
// all EUI buffer so we do it here to a temp // all EUI buffer so we do it here to a temp
// buffer to be able to display them // buffer to be able to display them
uint8_t buf[32]; uint8_t buf[32];
os_getDevEui((u1_t *)buf); os_getDevEui((u1_t*) buf);
printKey("DevEUI", buf, 8, true); printKey("DevEUI", buf, 8, true);
os_getArtEui((u1_t *)buf); os_getArtEui((u1_t*) buf);
printKey("AppEUI", buf, 8, true); printKey("AppEUI", buf, 8, true);
os_getDevKey((u1_t *)buf); os_getDevKey((u1_t*) buf);
printKey("AppKey", buf, 16, false); printKey("AppKey", buf, 16, false);
} }
#endif // VERBOSE #endif // VERBOSE
@ -155,118 +155,105 @@ void do_send(osjob_t *j) {
#endif #endif
sprintf(display_lmic, "PACKET QUEUED"); sprintf(display_lmic, "PACKET QUEUED");
// clear counter if not in cumulative counter mode #ifdef HAS_GPS
if (cfg.countermode != 1) { static uint8_t gpsdata[18];
reset_counters(); // clear macs container and reset all counters if (cfg.gpsmode && gps.location.isValid()) {
reset_salt(); // get new salt for salting hashes gps_read();
ESP_LOGI(TAG, "Counter cleared (countermode = %d)", cfg.countermode); memcpy (gpsdata, mydata, 4);
} memcpy (gpsdata+4, &gps_status, sizeof(gps_status));
ESP_LOGI(TAG, "lat=%.6f / lon=%.6f | %u Sats | HDOP=%.1f | Altitude=%u m", \
gps_status.latitude / (float) 1000000, \
gps_status.longitude / (float) 1000000, \
gps_status.satellites, \
gps_status.hdop / (float) 100, \
gps_status.altitude);
LMIC_setTxData2(COUNTERPORT, gpsdata, sizeof(gpsdata), (cfg.countermode & 0x02));
ESP_LOGI(TAG, "%d bytes queued to send", sizeof(gpsdata));
}
else {
#endif
LMIC_setTxData2(COUNTERPORT, mydata, sizeof(mydata), (cfg.countermode & 0x02));
ESP_LOGI(TAG, "%d bytes queued to send", sizeof(mydata));
sprintf(display_lmic, "PACKET QUEUED");
#ifdef HAS_GPS
}
#endif
// clear counter if not in cumulative counter mode
if (cfg.countermode != 1) {
reset_counters(); // clear macs container and reset all counters
reset_salt(); // get new salt for salting hashes
ESP_LOGI(TAG, "Counter cleared (countermode = %d)", cfg.countermode);
}
} // do_send() } // do_send()
void onEvent(ev_t ev) { void onEvent (ev_t ev) {
char buff[24] = ""; char buff[24]="";
switch (ev) { switch(ev) {
case EV_SCAN_TIMEOUT: case EV_SCAN_TIMEOUT: strcpy_P(buff, PSTR("SCAN TIMEOUT")); break;
strcpy_P(buff, PSTR("SCAN TIMEOUT")); case EV_BEACON_FOUND: strcpy_P(buff, PSTR("BEACON FOUND")); break;
break; case EV_BEACON_MISSED: strcpy_P(buff, PSTR("BEACON MISSED")); break;
case EV_BEACON_FOUND: case EV_BEACON_TRACKED: strcpy_P(buff, PSTR("BEACON TRACKED")); break;
strcpy_P(buff, PSTR("BEACON FOUND")); case EV_JOINING: strcpy_P(buff, PSTR("JOINING")); break;
break; case EV_LOST_TSYNC: strcpy_P(buff, PSTR("LOST TSYNC")); break;
case EV_BEACON_MISSED: case EV_RESET: strcpy_P(buff, PSTR("RESET")); break;
strcpy_P(buff, PSTR("BEACON MISSED")); case EV_RXCOMPLETE: strcpy_P(buff, PSTR("RX COMPLETE")); break;
break; case EV_LINK_DEAD: strcpy_P(buff, PSTR("LINK DEAD")); break;
case EV_BEACON_TRACKED: case EV_LINK_ALIVE: strcpy_P(buff, PSTR("LINK ALIVE")); break;
strcpy_P(buff, PSTR("BEACON TRACKED")); case EV_RFU1: strcpy_P(buff, PSTR("RFUI")); break;
break; case EV_JOIN_FAILED: strcpy_P(buff, PSTR("JOIN FAILED")); break;
case EV_JOINING: case EV_REJOIN_FAILED: strcpy_P(buff, PSTR("REJOIN FAILED")); break;
strcpy_P(buff, PSTR("JOINING"));
break; case EV_JOINED:
case EV_LOST_TSYNC:
strcpy_P(buff, PSTR("LOST TSYNC"));
break;
case EV_RESET:
strcpy_P(buff, PSTR("RESET"));
break;
case EV_RXCOMPLETE:
strcpy_P(buff, PSTR("RX COMPLETE"));
break;
case EV_LINK_DEAD:
strcpy_P(buff, PSTR("LINK DEAD"));
break;
case EV_LINK_ALIVE:
strcpy_P(buff, PSTR("LINK ALIVE"));
break;
case EV_RFU1:
strcpy_P(buff, PSTR("RFUI"));
break;
case EV_JOIN_FAILED:
strcpy_P(buff, PSTR("JOIN FAILED"));
break;
case EV_REJOIN_FAILED:
strcpy_P(buff, PSTR("REJOIN FAILED"));
break;
case EV_JOINED: strcpy_P(buff, PSTR("JOINED"));
sprintf(display_lora, " "); // clear previous lmic status message from display
strcpy_P(buff, PSTR("JOINED")); // set data rate adaptation
sprintf(display_lora, LMIC_setAdrMode(cfg.adrmode);
" "); // clear previous lmic status message from display // Set data rate and transmit power (note: txpower seems to be ignored by the library)
switch_lora(cfg.lorasf,cfg.txpower);
// show effective LoRa parameters after join
ESP_LOGI(TAG, "ADR=%d, SF=%d, TXPOWER=%d", cfg.adrmode, cfg.lorasf, cfg.txpower);
break;
// set data rate adaptation case EV_TXCOMPLETE:
LMIC_setAdrMode(cfg.adrmode);
// Set data rate and transmit power (note: txpower seems to be ignored by
// the library)
switch_lora(cfg.lorasf, cfg.txpower);
// show effective LoRa parameters after join strcpy_P(buff, (LMIC.txrxFlags & TXRX_ACK) ? PSTR("RECEIVED ACK") : PSTR("TX COMPLETE"));
ESP_LOGI(TAG, "ADR=%d, SF=%d, TXPOWER=%d", cfg.adrmode, cfg.lorasf, sprintf(display_lora, " "); // clear previous lmic status message from display
cfg.txpower);
break; if (LMIC.dataLen) {
ESP_LOGI(TAG, "Received %d bytes of payload, RSSI %d SNR %d", LMIC.dataLen, LMIC.rssi, (signed char)LMIC.snr / 4);
// LMIC.snr = SNR twos compliment [dB] * 4
// LMIC.rssi = RSSI [dBm] (-196...+63)
sprintf(display_lora, "RSSI %d SNR %d", LMIC.rssi, (signed char)LMIC.snr / 4 );
case EV_TXCOMPLETE: // check if payload received on command port, then call remote command interpreter
if ( (LMIC.txrxFlags & TXRX_PORT) && (LMIC.frame[LMIC.dataBeg-1] == RCMDPORT ) ) {
// caution: buffering LMIC values here because rcommand() can modify LMIC.frame
unsigned char* buffer = new unsigned char[MAX_LEN_FRAME];
memcpy(buffer, LMIC.frame, MAX_LEN_FRAME); //Copy data from cfg to char*
int i, k = LMIC.dataBeg, l = LMIC.dataBeg+LMIC.dataLen-2;
for (i=k; i<=l; i+=2) {
rcommand(buffer[i], buffer[i+1]);
}
delete[] buffer; //free memory
}
}
break;
strcpy_P(buff, (LMIC.txrxFlags & TXRX_ACK) ? PSTR("RECEIVED ACK") default: sprintf_P(buff, PSTR("UNKNOWN EVENT %d"), ev); break;
: PSTR("TX COMPLETE"));
sprintf(display_lora,
" "); // clear previous lmic status message from display
if (LMIC.dataLen) {
ESP_LOGI(TAG, "Received %d bytes of payload, RSSI %d SNR %d",
LMIC.dataLen, LMIC.rssi, (signed char)LMIC.snr / 4);
// LMIC.snr = SNR twos compliment [dB] * 4
// LMIC.rssi = RSSI [dBm] (-196...+63)
sprintf(display_lora, "RSSI %d SNR %d", LMIC.rssi,
(signed char)LMIC.snr / 4);
// check if payload received on command port, then call remote command
// interpreter
if ((LMIC.txrxFlags & TXRX_PORT) &&
(LMIC.frame[LMIC.dataBeg - 1] == RCMDPORT)) {
// caution: buffering LMIC values here because rcommand() can modify
// LMIC.frame
unsigned char *buffer = new unsigned char[MAX_LEN_FRAME];
memcpy(buffer, LMIC.frame, MAX_LEN_FRAME); // Copy data from cfg to
// char*
int i, k = LMIC.dataBeg, l = LMIC.dataBeg + LMIC.dataLen - 2;
for (i = k; i <= l; i += 2) {
rcommand(buffer[i], buffer[i + 1]);
}
delete[] buffer; // free memory
}
} }
break;
default:
sprintf_P(buff, PSTR("UNKNOWN EVENT %d"), ev);
break;
}
// Log & Display if asked
if (*buff) {
ESP_LOGI(TAG, "EV_%s", buff);
sprintf(display_lmic, buff);
}
// Log & Display if asked
if (*buff) {
ESP_LOGI(TAG, "EV_%s", buff);
sprintf(display_lmic, buff);
}
} // onEvent() } // onEvent()

View File

@ -2,9 +2,9 @@
#define LORAWAN_H #define LORAWAN_H
void onEvent(ev_t ev); void onEvent(ev_t ev);
void do_send(osjob_t *j); void do_send(osjob_t* j);
void gen_lora_deveui(uint8_t *pdeveui); void gen_lora_deveui(uint8_t * pdeveui);
void RevBytes(unsigned char *b, size_t c); void RevBytes(unsigned char* b, size_t c);
void get_hard_deveui(uint8_t *pdeveui); void get_hard_deveui(uint8_t *pdeveui);
#endif #endif

View File

@ -3,136 +3,114 @@
#include "globals.h" #include "globals.h"
#ifdef VENDORFILTER #ifdef VENDORFILTER
#include "vendor_array.h" #include "vendor_array.h"
#endif #endif
// Local logging tag // Local logging tag
static const char TAG[] = "wifi"; static const char TAG[] = "wifi";
static wifi_country_t wifi_country = {.cc = WIFI_MY_COUNTRY, static wifi_country_t wifi_country = {.cc=WIFI_MY_COUNTRY, .schan=WIFI_CHANNEL_MIN, .nchan=WIFI_CHANNEL_MAX, .policy=WIFI_COUNTRY_POLICY_MANUAL};
.schan = WIFI_CHANNEL_MIN,
.nchan = WIFI_CHANNEL_MAX,
.policy = WIFI_COUNTRY_POLICY_MANUAL};
// globals // globals
uint16_t salt; uint16_t salt;
uint16_t reset_salt(void) { uint16_t reset_salt(void) {
salt = random( salt = random(65536); // get new 16bit random for salting hashes and set global salt var
65536); // get new 16bit random for salting hashes and set global salt var return salt;
return salt;
} }
bool mac_add(uint8_t *paddr, int8_t rssi, bool sniff_type) { bool mac_add(uint8_t *paddr, int8_t rssi, bool sniff_type) {
char buff[16]; // temporary buffer for printf char buff[16]; // temporary buffer for printf
bool added = false; bool added = false;
uint32_t addr2int, vendor2int; // temporary buffer for MAC and Vendor OUI uint32_t addr2int, vendor2int; // temporary buffer for MAC and Vendor OUI
uint16_t hashedmac; // temporary buffer for generated hash value uint16_t hashedmac; // temporary buffer for generated hash value
// only last 3 MAC Address bytes are used for MAC address anonymization // only last 3 MAC Address bytes are used for MAC address anonymization
// but since it's uint32 we take 4 bytes to avoid 1st value to be 0 // but since it's uint32 we take 4 bytes to avoid 1st value to be 0
addr2int = ((uint32_t)paddr[2]) | ((uint32_t)paddr[3] << 8) | addr2int = ( (uint32_t)paddr[2] ) | ( (uint32_t)paddr[3] << 8 ) | ( (uint32_t)paddr[4] << 16 ) | ( (uint32_t)paddr[5] << 24 );
((uint32_t)paddr[4] << 16) | ((uint32_t)paddr[5] << 24);
#ifdef VENDORFILTER #ifdef VENDORFILTER
vendor2int = ((uint32_t)paddr[2]) | ((uint32_t)paddr[1] << 8) | vendor2int = ( (uint32_t)paddr[2] ) | ( (uint32_t)paddr[1] << 8 ) | ( (uint32_t)paddr[0] << 16 );
((uint32_t)paddr[0] << 16); // use OUI vendor filter list only on Wifi, not on BLE
// use OUI vendor filter list only on Wifi, not on BLE if ( (sniff_type==MAC_SNIFF_BLE) || std::find(vendors.begin(), vendors.end(), vendor2int) != vendors.end() )
if ((sniff_type == MAC_SNIFF_BLE) || {
std::find(vendors.begin(), vendors.end(), vendor2int) != vendors.end()) { #endif
#endif
// salt and hash MAC, and if new unique one, store identifier in container // salt and hash MAC, and if new unique one, store identifier in container and increment counter on display
// and increment counter on display // https://en.wikipedia.org/wiki/MAC_Address_Anonymization
// https://en.wikipedia.org/wiki/MAC_Address_Anonymization
addr2int += (uint32_t)salt; // add 16-bit salt to pseudo MAC
addr2int += (uint32_t)salt; // add 16-bit salt to pseudo MAC snprintf(buff, sizeof(buff), "%08X", addr2int); // convert unsigned 32-bit salted MAC to 8 digit hex string
snprintf( hashedmac = rokkit(&buff[3], 5); // hash MAC last string value, use 5 chars to fit hash in uint16_t container
buff, sizeof(buff), "%08X", auto newmac = macs.insert(hashedmac); // add hashed MAC to total container if new unique
addr2int); // convert unsigned 32-bit salted MAC to 8 digit hex string added = newmac.second ? true:false; // true if hashed MAC is unique in container
hashedmac = rokkit(&buff[3], 5); // hash MAC last string value, use 5 chars
// to fit hash in uint16_t container
auto newmac = macs.insert(
hashedmac); // add hashed MAC to total container if new unique
added = newmac.second ? true
: false; // true if hashed MAC is unique in container
// Count only if MAC was not yet seen // Count only if MAC was not yet seen
if (added) { if (added) {
// increment counter and one blink led // increment counter and one blink led
if (sniff_type == MAC_SNIFF_WIFI) { if (sniff_type == MAC_SNIFF_WIFI ) {
macs_wifi++; // increment Wifi MACs counter macs_wifi++; // increment Wifi MACs counter
#if (HAS_LED != NOT_A_PIN) || defined(HAS_RGB_LED) #if (HAS_LED != NOT_A_PIN) || defined (HAS_RGB_LED)
blink_LED(COLOR_GREEN, 50); blink_LED(COLOR_GREEN, 50);
#endif #endif
} }
#ifdef BLECOUNTER #ifdef BLECOUNTER
else if (sniff_type == MAC_SNIFF_BLE) { else if (sniff_type == MAC_SNIFF_BLE ) {
macs_ble++; // increment BLE Macs counter macs_ble++; // increment BLE Macs counter
#if (HAS_LED != NOT_A_PIN) || defined(HAS_RGB_LED) #if (HAS_LED != NOT_A_PIN) || defined (HAS_RGB_LED)
blink_LED(COLOR_MAGENTA, 50); blink_LED(COLOR_MAGENTA, 50);
#endif #endif
} }
#endif #endif
} }
// Log scan result // Log scan result
ESP_LOGI(TAG, ESP_LOGI(TAG, "%s %s RSSI %ddBi -> MAC %s -> Hash %04X -> WiFi:%d BLTH:%d -> %d Bytes left",
"%s %s RSSI %ddBi -> MAC %s -> Hash %04X -> WiFi:%d BLTH:%d -> " added ? "new " : "known",
"%d Bytes left", sniff_type==MAC_SNIFF_WIFI ? "WiFi":"BLTH",
added ? "new " : "known", rssi, buff, hashedmac, macs_wifi, macs_ble,
sniff_type == MAC_SNIFF_WIFI ? "WiFi" : "BLTH", rssi, buff, ESP.getFreeHeap());
hashedmac, macs_wifi, macs_ble, ESP.getFreeHeap());
#ifdef VENDORFILTER #ifdef VENDORFILTER
} else { } else {
// Very noisy // Very noisy
// ESP_LOGD(TAG, "Filtered MAC %02X:%02X:%02X:%02X:%02X:%02X", // ESP_LOGD(TAG, "Filtered MAC %02X:%02X:%02X:%02X:%02X:%02X", paddr[0],paddr[1],paddr[2],paddr[3],paddr[5],paddr[5]);
// paddr[0],paddr[1],paddr[2],paddr[3],paddr[5],paddr[5]); }
} #endif
#endif
// True if MAC WiFi/BLE was new // True if MAC WiFi/BLE was new
return added; // function returns bool if a new and unique Wifi or BLE mac was return added; // function returns bool if a new and unique Wifi or BLE mac was counted (true) or not (false)
// counted (true) or not (false)
} }
void wifi_sniffer_init(void) { void wifi_sniffer_init(void) {
wifi_init_config_t cfg = WIFI_INIT_CONFIG_DEFAULT(); wifi_init_config_t cfg = WIFI_INIT_CONFIG_DEFAULT();
cfg.nvs_enable = 0; // we don't need any wifi settings from NVRAM cfg.nvs_enable = 0; // we don't need any wifi settings from NVRAM
wifi_promiscuous_filter_t filter = { wifi_promiscuous_filter_t filter = {.filter_mask = WIFI_PROMIS_FILTER_MASK_MGMT}; // we need only MGMT frames
.filter_mask = WIFI_PROMIS_FILTER_MASK_MGMT}; // we need only MGMT frames ESP_ERROR_CHECK(esp_wifi_init(&cfg)); // configure Wifi with cfg
ESP_ERROR_CHECK(esp_wifi_init(&cfg)); // configure Wifi with cfg ESP_ERROR_CHECK(esp_wifi_set_country(&wifi_country)); // set locales for RF and channels
ESP_ERROR_CHECK( ESP_ERROR_CHECK(esp_wifi_set_storage(WIFI_STORAGE_RAM)); // we don't need NVRAM
esp_wifi_set_country(&wifi_country)); // set locales for RF and channels //ESP_ERROR_CHECK(esp_wifi_set_mode(WIFI_MODE_NULL));
ESP_ERROR_CHECK( ESP_ERROR_CHECK(esp_wifi_set_promiscuous_filter(&filter)); // set MAC frame filter
esp_wifi_set_storage(WIFI_STORAGE_RAM)); // we don't need NVRAM ESP_ERROR_CHECK(esp_wifi_set_promiscuous_rx_cb(&wifi_sniffer_packet_handler));
// ESP_ERROR_CHECK(esp_wifi_set_mode(WIFI_MODE_NULL)); ESP_ERROR_CHECK(esp_wifi_set_promiscuous(true)); // now switch on monitor mode
ESP_ERROR_CHECK(
esp_wifi_set_promiscuous_filter(&filter)); // set MAC frame filter
ESP_ERROR_CHECK(esp_wifi_set_promiscuous_rx_cb(&wifi_sniffer_packet_handler));
ESP_ERROR_CHECK(esp_wifi_set_promiscuous(true)); // now switch on monitor mode
} }
void wifi_sniffer_set_channel(uint8_t channel) { void wifi_sniffer_set_channel(uint8_t channel) {
esp_wifi_set_channel(channel, WIFI_SECOND_CHAN_NONE); esp_wifi_set_channel(channel, WIFI_SECOND_CHAN_NONE);
} }
// using IRAM_:ATTR here to speed up callback function // using IRAM_:ATTR here to speed up callback function
IRAM_ATTR void wifi_sniffer_packet_handler(void *buff, IRAM_ATTR void wifi_sniffer_packet_handler(void* buff, wifi_promiscuous_pkt_type_t type) {
wifi_promiscuous_pkt_type_t type) { const wifi_promiscuous_pkt_t *ppkt = (wifi_promiscuous_pkt_t *)buff;
const wifi_promiscuous_pkt_t *ppkt = (wifi_promiscuous_pkt_t *)buff; const wifi_ieee80211_packet_t *ipkt = (wifi_ieee80211_packet_t *)ppkt->payload;
const wifi_ieee80211_packet_t *ipkt = const wifi_ieee80211_mac_hdr_t *hdr = &ipkt->hdr;
(wifi_ieee80211_packet_t *)ppkt->payload;
const wifi_ieee80211_mac_hdr_t *hdr = &ipkt->hdr; if ((cfg.rssilimit) && (ppkt->rx_ctrl.rssi < cfg.rssilimit )) { // rssi is negative value
ESP_LOGI(TAG, "WiFi RSSI %d -> ignoring (limit: %d)", ppkt->rx_ctrl.rssi, cfg.rssilimit);
if ((cfg.rssilimit) && } else {
(ppkt->rx_ctrl.rssi < cfg.rssilimit)) { // rssi is negative value uint8_t *p = (uint8_t *) hdr->addr2;
ESP_LOGI(TAG, "WiFi RSSI %d -> ignoring (limit: %d)", ppkt->rx_ctrl.rssi, mac_add(p, ppkt->rx_ctrl.rssi, MAC_SNIFF_WIFI) ;
cfg.rssilimit); }
} else {
uint8_t *p = (uint8_t *)hdr->addr2;
mac_add(p, ppkt->rx_ctrl.rssi, MAC_SNIFF_WIFI);
}
} }

View File

@ -5,21 +5,21 @@
#include <esp_wifi.h> #include <esp_wifi.h>
#define MAC_SNIFF_WIFI 0 #define MAC_SNIFF_WIFI 0
#define MAC_SNIFF_BLE 1 #define MAC_SNIFF_BLE 1
typedef struct { typedef struct {
unsigned frame_ctrl : 16; unsigned frame_ctrl:16;
unsigned duration_id : 16; unsigned duration_id:16;
uint8_t addr1[6]; /* receiver address */ uint8_t addr1[6]; /* receiver address */
uint8_t addr2[6]; /* sender address */ uint8_t addr2[6]; /* sender address */
uint8_t addr3[6]; /* filtering address */ uint8_t addr3[6]; /* filtering address */
unsigned sequence_ctrl : 16; unsigned sequence_ctrl:16;
uint8_t addr4[6]; /* optional */ uint8_t addr4[6]; /* optional */
} wifi_ieee80211_mac_hdr_t; } wifi_ieee80211_mac_hdr_t;
typedef struct { typedef struct {
wifi_ieee80211_mac_hdr_t hdr; wifi_ieee80211_mac_hdr_t hdr;
uint8_t payload[0]; /* network data ended with 4 bytes csum (CRC32) */ uint8_t payload[0]; /* network data ended with 4 bytes csum (CRC32) */
} wifi_ieee80211_packet_t; } wifi_ieee80211_packet_t;
uint16_t reset_salt(void); uint16_t reset_salt(void);
@ -28,6 +28,6 @@ void wifi_sniffer_set_channel(uint8_t channel);
void wifi_sniffer_packet_handler(void *buff, wifi_promiscuous_pkt_type_t type); void wifi_sniffer_packet_handler(void *buff, wifi_promiscuous_pkt_type_t type);
// function defined in rokkithash.cpp // function defined in rokkithash.cpp
uint32_t rokkit(const char *, int); uint32_t rokkit(const char * , int );
#endif #endif

View File

@ -10,12 +10,15 @@
//--- Declarations --- //--- Declarations ---
enum led_states { LED_OFF, LED_ON }; enum led_states {
LED_OFF,
LED_ON
};
#if defined(CFG_eu868) #if defined(CFG_eu868)
const char lora_datarate[] = {"1211100908077BFSNA"}; const char lora_datarate[] = {"1211100908077BFSNA"};
#elif defined(CFG_us915) #elif defined(CFG_us915)
const char lora_datarate[] = {"100908078CNA121110090807"}; const char lora_datarate[] = {"100908078CNA121110090807"};
#endif #endif
//--- Prototypes --- //--- Prototypes ---
@ -25,14 +28,21 @@ void reset_counters(void);
void blink_LED(uint16_t set_color, uint16_t set_blinkduration); void blink_LED(uint16_t set_color, uint16_t set_blinkduration);
void led_loop(void); void led_loop(void);
// defined in blescan.cpp // defined in blescan.cpp
#ifdef BLECOUNTER #ifdef BLECOUNTER
void start_BLEscan(void); void start_BLEscan(void);
void stop_BLEscan(void); void stop_BLEscan(void);
#endif #endif
// defined in gpsread.cpp //defined in gpsread.cpp
#ifdef HAS_GPS #ifdef HAS_GPS
<<<<<<< HEAD
void gps_read(void); void gps_read(void);
void gps_loop(void *pvParameters); void gps_loop(void *pvParameters);
#endif #endif
=======
void gps_read(void);
void gps_loop(void * pvParameters);
#endif
>>>>>>> master

View File

@ -1,365 +1,310 @@
// remote command interpreter // remote command interpreter
// parses multiple number of command / value pairs from LoRaWAN remote command // parses multiple number of command / value pairs from LoRaWAN remote command port (RCMDPORT)
// port (RCMDPORT) checks commands and executes each command with 1 argument per // checks commands and executes each command with 1 argument per command
// command
// Basic Config // Basic Config
#include "globals.h" #include "globals.h"
// LMIC-Arduino LoRaWAN Stack // LMIC-Arduino LoRaWAN Stack
#include <hal/hal.h>
#include <lmic.h> #include <lmic.h>
#include <hal/hal.h>
// Local logging tag // Local logging tag
static const char TAG[] = "main"; static const char TAG[] = "main";
// table of remote commands and assigned functions // table of remote commands and assigned functions
typedef struct { typedef struct {
const uint8_t nam; const uint8_t nam;
void (*func)(uint8_t); void (*func)(uint8_t);
const bool store; const bool store;
} cmd_t; } cmd_t;
// function defined in antenna.cpp // function defined in antenna.cpp
#ifdef HAS_ANTENNA_SWITCH #ifdef HAS_ANTENNA_SWITCH
void antenna_select(const uint8_t _ant); void antenna_select(const uint8_t _ant);
#endif #endif
// function defined in adcread.cpp // function defined in adcread.cpp
#ifdef HAS_BATTERY_PROBE #ifdef HAS_BATTERY_PROBE
uint32_t read_voltage(void); uint32_t read_voltage(void);
#endif #endif
// function sends result of get commands to LoRaWAN network // function sends result of get commands to LoRaWAN network
void do_transmit(osjob_t *j) { void do_transmit(osjob_t* j){
// check if there is a pending TX/RX job running, if yes then reschedule // check if there is a pending TX/RX job running, if yes then reschedule transmission
// transmission if (LMIC.opmode & OP_TXRXPEND) {
if (LMIC.opmode & OP_TXRXPEND) { ESP_LOGI(TAG, "LoRa busy, rescheduling");
ESP_LOGI(TAG, "LoRa busy, rescheduling"); sprintf(display_lmic, "LORA BUSY");
sprintf(display_lmic, "LORA BUSY"); os_setTimedCallback(&rcmdjob, os_getTime()+sec2osticks(RETRANSMIT_RCMD), do_transmit);
os_setTimedCallback(&rcmdjob, os_getTime() + sec2osticks(RETRANSMIT_RCMD), }
do_transmit); LMIC_setTxData2(RCMDPORT, rcmd_data, rcmd_data_size, 0); // send data unconfirmed on RCMD Port
} ESP_LOGI(TAG, "%d bytes queued to send", rcmd_data_size);
LMIC_setTxData2(RCMDPORT, rcmd_data, rcmd_data_size, sprintf(display_lmic, "PACKET QUEUED");
0); // send data unconfirmed on RCMD Port
ESP_LOGI(TAG, "%d bytes queued to send", rcmd_data_size);
sprintf(display_lmic, "PACKET QUEUED");
} }
// help function to transmit result of get commands, since callback function // help function to transmit result of get commands, since callback function do_transmit() cannot have params
// do_transmit() cannot have params void transmit(xref2u1_t mydata, u1_t mydata_size){
void transmit(xref2u1_t mydata, u1_t mydata_size) { rcmd_data = mydata;
rcmd_data = mydata; rcmd_data_size = mydata_size;
rcmd_data_size = mydata_size; do_transmit(&rcmdjob);
do_transmit(&rcmdjob);
} }
// help function to assign LoRa datarates to numeric spreadfactor values // help function to assign LoRa datarates to numeric spreadfactor values
void switch_lora(uint8_t sf, uint8_t tx) { void switch_lora (uint8_t sf, uint8_t tx) {
if (tx > 20) if ( tx > 20 ) return;
return; cfg.txpower = tx;
cfg.txpower = tx; switch (sf) {
switch (sf) { case 7: LMIC_setDrTxpow(DR_SF7,tx); cfg.lorasf=sf; break;
case 7: case 8: LMIC_setDrTxpow(DR_SF8,tx); cfg.lorasf=sf; break;
LMIC_setDrTxpow(DR_SF7, tx); case 9: LMIC_setDrTxpow(DR_SF9,tx); cfg.lorasf=sf; break;
cfg.lorasf = sf; case 10: LMIC_setDrTxpow(DR_SF10,tx); cfg.lorasf=sf; break;
break; case 11:
case 8: #if defined(CFG_eu868)
LMIC_setDrTxpow(DR_SF8, tx); LMIC_setDrTxpow(DR_SF11,tx); cfg.lorasf=sf; break;
cfg.lorasf = sf; #elif defined(CFG_us915)
break; LMIC_setDrTxpow(DR_SF11CR,tx); cfg.lorasf=sf; break;
case 9: #endif
LMIC_setDrTxpow(DR_SF9, tx); case 12:
cfg.lorasf = sf; #if defined(CFG_eu868)
break; LMIC_setDrTxpow(DR_SF12,tx); cfg.lorasf=sf; break;
case 10: #elif defined(CFG_us915)
LMIC_setDrTxpow(DR_SF10, tx); LMIC_setDrTxpow(DR_SF12CR,tx); cfg.lorasf=sf; break;
cfg.lorasf = sf; #endif
break; default: break;
case 11: }
#if defined(CFG_eu868)
LMIC_setDrTxpow(DR_SF11, tx);
cfg.lorasf = sf;
break;
#elif defined(CFG_us915)
LMIC_setDrTxpow(DR_SF11CR, tx);
cfg.lorasf = sf;
break;
#endif
case 12:
#if defined(CFG_eu868)
LMIC_setDrTxpow(DR_SF12, tx);
cfg.lorasf = sf;
break;
#elif defined(CFG_us915)
LMIC_setDrTxpow(DR_SF12CR, tx);
cfg.lorasf = sf;
break;
#endif
default:
break;
}
} }
// set of functions that can be triggered by remote commands // set of functions that can be triggered by remote commands
void set_reset(uint8_t val) { void set_reset(uint8_t val) {
switch (val) { switch (val) {
case 0: // restart device case 0: // restart device
ESP_LOGI(TAG, "Remote command: restart device"); ESP_LOGI(TAG, "Remote command: restart device");
sprintf(display_lora, "Reset pending"); sprintf(display_lora, "Reset pending");
vTaskDelay( vTaskDelay(10000/portTICK_PERIOD_MS); // wait for LMIC to confirm LoRa downlink to server
10000 / esp_restart();
portTICK_PERIOD_MS); // wait for LMIC to confirm LoRa downlink to server break;
esp_restart(); case 1: // reset MAC counter
break; ESP_LOGI(TAG, "Remote command: reset MAC counter");
case 1: // reset MAC counter reset_counters(); // clear macs
ESP_LOGI(TAG, "Remote command: reset MAC counter"); reset_salt(); // get new salt
reset_counters(); // clear macs sprintf(display_lora, "Reset counter");
reset_salt(); // get new salt break;
sprintf(display_lora, "Reset counter"); case 2: // reset device to factory settings
break; ESP_LOGI(TAG, "Remote command: reset device to factory settings");
case 2: // reset device to factory settings sprintf(display_lora, "Factory reset");
ESP_LOGI(TAG, "Remote command: reset device to factory settings"); eraseConfig();
sprintf(display_lora, "Factory reset"); break;
eraseConfig(); }
break;
}
}; };
void set_rssi(uint8_t val) { void set_rssi(uint8_t val) {
cfg.rssilimit = val * -1; cfg.rssilimit = val * -1;
ESP_LOGI(TAG, "Remote command: set RSSI limit to %d", cfg.rssilimit); ESP_LOGI(TAG, "Remote command: set RSSI limit to %d", cfg.rssilimit);
}; };
void set_sendcycle(uint8_t val) { void set_sendcycle(uint8_t val) {
cfg.sendcycle = val; cfg.sendcycle = val;
ESP_LOGI(TAG, "Remote command: set payload send cycle to %d seconds", ESP_LOGI(TAG, "Remote command: set payload send cycle to %d seconds", cfg.sendcycle*2);
cfg.sendcycle * 2); };
};
void set_wifichancycle(uint8_t val) { void set_wifichancycle(uint8_t val) {
cfg.wifichancycle = val; cfg.wifichancycle = val;
// modify wifi channel rotation IRQ // modify wifi channel rotation IRQ
timerAlarmWrite( timerAlarmWrite(channelSwitch, cfg.wifichancycle * 10000, true); // reload interrupt after each trigger of channel switch cycle
channelSwitch, cfg.wifichancycle * 10000, ESP_LOGI(TAG, "Remote command: set Wifi channel switch interval to %.1f seconds", cfg.wifichancycle/float(100));
true); // reload interrupt after each trigger of channel switch cycle };
ESP_LOGI(TAG,
"Remote command: set Wifi channel switch interval to %.1f seconds",
cfg.wifichancycle / float(100));
};
void set_blescantime(uint8_t val) { void set_blescantime(uint8_t val) {
cfg.blescantime = val; cfg.blescantime = val;
ESP_LOGI(TAG, "Remote command: set BLE scan time to %.1f seconds", ESP_LOGI(TAG, "Remote command: set BLE scan time to %.1f seconds", cfg.blescantime/float(100));
cfg.blescantime / float(100)); #ifdef BLECOUNTER
#ifdef BLECOUNTER // stop & restart BLE scan task to apply new parameter
// stop & restart BLE scan task to apply new parameter if (cfg.blescan)
if (cfg.blescan) { {
stop_BLEscan(); stop_BLEscan();
start_BLEscan(); start_BLEscan();
} }
#endif #endif
}; };
void set_countmode(uint8_t val) { void set_countmode(uint8_t val) {
switch (val) { switch (val) {
case 0: // cyclic unconfirmed case 0: // cyclic unconfirmed
cfg.countermode = 0; cfg.countermode = 0;
ESP_LOGI(TAG, "Remote command: set counter mode to cyclic unconfirmed"); ESP_LOGI(TAG, "Remote command: set counter mode to cyclic unconfirmed");
break; break;
case 1: // cumulative case 1: // cumulative
cfg.countermode = 1; cfg.countermode = 1;
ESP_LOGI(TAG, "Remote command: set counter mode to cumulative"); ESP_LOGI(TAG, "Remote command: set counter mode to cumulative");
break; break;
default: // cyclic confirmed default: // cyclic confirmed
cfg.countermode = 2; cfg.countermode = 2;
ESP_LOGI(TAG, "Remote command: set counter mode to cyclic confirmed"); ESP_LOGI(TAG, "Remote command: set counter mode to cyclic confirmed");
break; break;
} }
}; };
void set_screensaver(uint8_t val) { void set_screensaver(uint8_t val) {
ESP_LOGI(TAG, "Remote command: set screen saver to %s ", val ? "on" : "off"); ESP_LOGI(TAG, "Remote command: set screen saver to %s ", val ? "on" : "off");
switch (val) { switch (val) {
case 1: case 1: cfg.screensaver = val; break;
cfg.screensaver = val; default: cfg.screensaver = 0; break;
break; }
default:
cfg.screensaver = 0;
break;
}
}; };
void set_display(uint8_t val) { void set_display(uint8_t val) {
ESP_LOGI(TAG, "Remote command: set screen to %s", val ? "on" : "off"); ESP_LOGI(TAG, "Remote command: set screen to %s", val ? "on" : "off");
switch (val) { switch (val) {
case 1: case 1: cfg.screenon = val; break;
cfg.screenon = val; default: cfg.screenon = 0; break;
break; }
default:
cfg.screenon = 0;
break;
}
}; };
void set_gps(uint8_t val) { void set_gps(uint8_t val) {
ESP_LOGI(TAG, "Remote command: set GPS to %s", val ? "on" : "off"); ESP_LOGI(TAG, "Remote command: set GPS to %s", val ? "on" : "off");
switch (val) { switch (val) {
case 1: case 1: cfg.gpsmode = val; break;
cfg.gpsmode = val; default: cfg.gpsmode = 0; break;
break; }
default:
cfg.gpsmode = 0;
break;
}
}; };
void set_lorasf(uint8_t val) { void set_lorasf(uint8_t val) {
ESP_LOGI(TAG, "Remote command: set LoRa SF to %d", val); ESP_LOGI(TAG, "Remote command: set LoRa SF to %d", val);
switch_lora(val, cfg.txpower); switch_lora(val, cfg.txpower);
}; };
void set_loraadr(uint8_t val) { void set_loraadr(uint8_t val) {
ESP_LOGI(TAG, "Remote command: set LoRa ADR mode to %s", val ? "on" : "off"); ESP_LOGI(TAG, "Remote command: set LoRa ADR mode to %s", val ? "on" : "off");
switch (val) { switch (val) {
case 1: case 1: cfg.adrmode = val; break;
cfg.adrmode = val; default: cfg.adrmode = 0; break;
break; }
default: LMIC_setAdrMode(cfg.adrmode);
cfg.adrmode = 0;
break;
}
LMIC_setAdrMode(cfg.adrmode);
}; };
void set_blescan(uint8_t val) { void set_blescan(uint8_t val) {
ESP_LOGI(TAG, "Remote command: set BLE scanner to %s", val ? "on" : "off"); ESP_LOGI(TAG, "Remote command: set BLE scanner to %s", val ? "on" : "off");
switch (val) { switch (val) {
case 0: case 0:
cfg.blescan = 0; cfg.blescan = 0;
macs_ble = 0; // clear BLE counter macs_ble = 0; // clear BLE counter
#ifdef BLECOUNTER #ifdef BLECOUNTER
stop_BLEscan(); stop_BLEscan();
#endif #endif
break; break;
default: default:
cfg.blescan = 1; cfg.blescan = 1;
#ifdef BLECOUNTER #ifdef BLECOUNTER
start_BLEscan(); start_BLEscan();
#endif #endif
break; break;
} }
}; };
void set_wifiant(uint8_t val) { void set_wifiant(uint8_t val) {
ESP_LOGI(TAG, "Remote command: set Wifi antenna to %s", ESP_LOGI(TAG, "Remote command: set Wifi antenna to %s", val ? "external" : "internal");
val ? "external" : "internal"); switch (val) {
switch (val) { case 1: cfg.wifiant = val; break;
case 1: default: cfg.wifiant = 0; break;
cfg.wifiant = val; }
break; #ifdef HAS_ANTENNA_SWITCH
default: antenna_select(cfg.wifiant);
cfg.wifiant = 0; #endif
break;
}
#ifdef HAS_ANTENNA_SWITCH
antenna_select(cfg.wifiant);
#endif
}; };
void set_vendorfilter(uint8_t val) { void set_vendorfilter(uint8_t val) {
ESP_LOGI(TAG, "Remote command: set vendorfilter mode to %s", ESP_LOGI(TAG, "Remote command: set vendorfilter mode to %s", val ? "on" : "off");
val ? "on" : "off"); switch (val) {
switch (val) { case 1: cfg.vendorfilter = val; break;
case 1: default: cfg.vendorfilter = 0; break;
cfg.vendorfilter = val; }
break;
default:
cfg.vendorfilter = 0;
break;
}
}; };
void set_rgblum(uint8_t val) { void set_rgblum(uint8_t val) {
// Avoid wrong parameters // Avoid wrong parameters
cfg.rgblum = (val >= 0 && val <= 100) ? (uint8_t)val : RGBLUMINOSITY; cfg.rgblum = (val>=0 && val<=100) ? (uint8_t) val : RGBLUMINOSITY;
ESP_LOGI(TAG, "Remote command: set RGB Led luminosity %d", cfg.rgblum); ESP_LOGI(TAG, "Remote command: set RGB Led luminosity %d", cfg.rgblum);
}; };
void set_lorapower(uint8_t val) { void set_lorapower(uint8_t val) {
ESP_LOGI(TAG, "Remote command: set LoRa TXPOWER to %d", val); ESP_LOGI(TAG, "Remote command: set LoRa TXPOWER to %d", val);
switch_lora(cfg.lorasf, val); switch_lora(cfg.lorasf, val);
}; };
void get_config(uint8_t val) { void get_config (uint8_t val) {
ESP_LOGI(TAG, "Remote command: get configuration"); ESP_LOGI(TAG, "Remote command: get configuration");
transmit((byte *)&cfg, sizeof(cfg)); transmit((byte*)&cfg, sizeof(cfg));
}; };
void get_uptime(uint8_t val) { void get_uptime (uint8_t val) {
ESP_LOGI(TAG, "Remote command: get uptime"); ESP_LOGI(TAG, "Remote command: get uptime");
transmit((byte *)&uptimecounter, sizeof(uptimecounter)); transmit((byte*)&uptimecounter, sizeof(uptimecounter));
}; };
void get_cputemp(uint8_t val) { void get_cputemp (uint8_t val) {
ESP_LOGI(TAG, "Remote command: get cpu temperature"); ESP_LOGI(TAG, "Remote command: get cpu temperature");
float temp = temperatureRead(); float temp = temperatureRead();
transmit((byte *)&temp, sizeof(temp)); transmit((byte*)&temp, sizeof(temp));
}; };
void get_voltage(uint8_t val) { void get_voltage (uint8_t val) {
ESP_LOGI(TAG, "Remote command: get battery voltage"); ESP_LOGI(TAG, "Remote command: get battery voltage");
#ifdef HAS_BATTERY_PROBE #ifdef HAS_BATTERY_PROBE
uint16_t voltage = read_voltage(); uint16_t voltage = read_voltage();
#else #else
uint16_t voltage = 0; uint16_t voltage = 0;
#endif #endif
transmit((byte *)&voltage, sizeof(voltage)); transmit((byte*)&voltage, sizeof(voltage));
}; };
void get_gps(uint8_t val) { void get_gps (uint8_t val) {
ESP_LOGI(TAG, "Remote command: get gps status"); ESP_LOGI(TAG, "Remote command: get gps status");
#ifdef HAS_GPS #ifdef HAS_GPS
gps_read(); gps_read();
transmit((byte *)&gps_status, sizeof(gps_status)); transmit((byte*)&gps_status, sizeof(gps_status));
ESP_LOGI(TAG, "lat=%f / lon=%f | Sats=%u | HDOP=%u | Alti=%u", ESP_LOGI(TAG, "lat=%f / lon=%f | Sats=%u | HDOP=%u | Alti=%u", gps_status.latitude / 1000000, gps_status.longitude / 1000000, gps_status.satellites, gps_status.hdop, gps_status.altitude);
gps_status.latitude / 1000000, gps_status.longitude / 1000000, #else
gps_status.satellites, gps_status.hdop, gps_status.altitude); ESP_LOGE(TAG, "GPS not present");
#else #endif
ESP_LOGE(TAG, "GPS not present");
#endif
}; };
// assign previously defined functions to set of numeric remote commands // assign previously defined functions to set of numeric remote commands
// format: opcode, function, flag (1 = do make settings persistent / 0 = don't) // format: opcode, function, flag (1 = do make settings persistent / 0 = don't)
// //
cmd_t table[] = {{0x01, set_rssi, true}, {0x02, set_countmode, true}, cmd_t table[] = {
{0x03, set_gps, true}, {0x04, set_display, true}, {0x01, set_rssi, true},
{0x05, set_lorasf, true}, {0x06, set_lorapower, true}, {0x02, set_countmode, true},
{0x07, set_loraadr, true}, {0x08, set_screensaver, true}, {0x03, set_gps, true},
{0x09, set_reset, false}, {0x0a, set_sendcycle, true}, {0x04, set_display, true},
{0x0b, set_wifichancycle, true}, {0x0c, set_blescantime, true}, {0x05, set_lorasf, true},
{0x0d, set_vendorfilter, false}, {0x0e, set_blescan, true}, {0x06, set_lorapower, true},
{0x0f, set_wifiant, true}, {0x10, set_rgblum, true}, {0x07, set_loraadr, true},
{0x80, get_config, false}, {0x81, get_uptime, false}, {0x08, set_screensaver, true},
{0x82, get_cputemp, false}, {0x83, get_voltage, false}, {0x09, set_reset, false},
{0x84, get_gps, false}}; {0x0a, set_sendcycle, true},
{0x0b, set_wifichancycle, true},
{0x0c, set_blescantime, true},
{0x0d, set_vendorfilter, false},
{0x0e, set_blescan, true},
{0x0f, set_wifiant, true},
{0x10, set_rgblum, true},
{0x80, get_config, false},
{0x81, get_uptime, false},
{0x82, get_cputemp, false},
{0x83, get_voltage, false},
{0x84, get_gps, false}
};
// check and execute remote command // check and execute remote command
void rcommand(uint8_t cmd, uint8_t arg) { void rcommand(uint8_t cmd, uint8_t arg) {
int i = int i = sizeof(table) / sizeof(table[0]); // number of commands in command table
sizeof(table) / sizeof(table[0]); // number of commands in command table bool store_flag = false;
bool store_flag = false; while(i--) {
while (i--) { if(cmd == table[i].nam) { // check if valid command
if (cmd == table[i].nam) { // check if valid command table[i].func(arg); // then execute assigned function
table[i].func(arg); // then execute assigned function if ( table[i].store ) store_flag = true; // set save flag if function needs to store configuration
if (table[i].store) break; // exit check loop, since command was found
store_flag = }
true; // set save flag if function needs to store configuration
break; // exit check loop, since command was found
} }
} if (store_flag) saveConfig(); // if save flag is set: store new configuration in NVS to make it persistent
if (store_flag)
saveConfig(); // if save flag is set: store new configuration in NVS to make
// it persistent
} }

View File

@ -6,22 +6,23 @@
// RGB Led instance // RGB Led instance
SmartLed rgb_led(LED_WS2812, 1, HAS_RGB_LED); SmartLed rgb_led(LED_WS2812, 1, HAS_RGB_LED);
float rgb_CalcColor(float p, float q, float t) { float rgb_CalcColor(float p, float q, float t)
if (t < 0.0f) {
t += 1.0f; if (t < 0.0f)
if (t > 1.0f) t += 1.0f;
t -= 1.0f; if (t > 1.0f)
t -= 1.0f;
if (t < 1.0f / 6.0f) if (t < 1.0f / 6.0f)
return p + (q - p) * 6.0f * t; return p + (q - p) * 6.0f * t;
if (t < 0.5f) if (t < 0.5f)
return q; return q;
if (t < 2.0f / 3.0f) if (t < 2.0f / 3.0f)
return p + ((q - p) * (2.0f / 3.0f - t) * 6.0f); return p + ((q - p) * (2.0f / 3.0f - t) * 6.0f);
return p; return p;
} }
// ------------------------------------------------------------------------ // ------------------------------------------------------------------------
@ -29,41 +30,45 @@ float rgb_CalcColor(float p, float q, float t) {
// HslColor using H, S, L values (0.0 - 1.0) // HslColor using H, S, L values (0.0 - 1.0)
// L should be limited to between (0.0 - 0.5) // L should be limited to between (0.0 - 0.5)
// ------------------------------------------------------------------------ // ------------------------------------------------------------------------
RGBColor rgb_hsl2rgb(float h, float s, float l) { RGBColor rgb_hsl2rgb(float h, float s, float l)
RGBColor RGB_color; {
float r; RGBColor RGB_color;
float g; float r;
float b; float g;
float b;
if (s == 0.0f || l == 0.0f) { if (s == 0.0f || l == 0.0f)
r = g = b = l; // achromatic or black {
} else { r = g = b = l; // achromatic or black
float q = l < 0.5f ? l * (1.0f + s) : l + s - (l * s); }
float p = 2.0f * l - q; else
r = rgb_CalcColor(p, q, h + 1.0f / 3.0f); {
g = rgb_CalcColor(p, q, h); float q = l < 0.5f ? l * (1.0f + s) : l + s - (l * s);
b = rgb_CalcColor(p, q, h - 1.0f / 3.0f); float p = 2.0f * l - q;
} r = rgb_CalcColor(p, q, h + 1.0f / 3.0f);
g = rgb_CalcColor(p, q, h);
b = rgb_CalcColor(p, q, h - 1.0f / 3.0f);
}
RGB_color.R = (uint8_t)(r * 255.0f); RGB_color.R = (uint8_t)(r * 255.0f);
RGB_color.G = (uint8_t)(g * 255.0f); RGB_color.G = (uint8_t)(g * 255.0f);
RGB_color.B = (uint8_t)(b * 255.0f); RGB_color.B = (uint8_t)(b * 255.0f);
return RGB_color; return RGB_color;
} }
void rgb_set_color(uint16_t hue) { void rgb_set_color(uint16_t hue) {
if (hue == COLOR_NONE) { if (hue == COLOR_NONE) {
// Off // Off
rgb_led[0] = Rgb(0, 0, 0); rgb_led[0] = Rgb(0,0,0);
} else { } else {
// see http://www.workwithcolor.com/blue-color-hue-range-01.htm // see http://www.workwithcolor.com/blue-color-hue-range-01.htm
// H (is color from 0..360) should be between 0.0 and 1.0 // H (is color from 0..360) should be between 0.0 and 1.0
// S is saturation keep it to 1 // S is saturation keep it to 1
// L is brightness should be between 0.0 and 0.5 // L is brightness should be between 0.0 and 0.5
// cfg.rgblum is between 0 and 100 (percent) // cfg.rgblum is between 0 and 100 (percent)
RGBColor target = rgb_hsl2rgb(hue / 360.0f, 1.0f, 0.005f * cfg.rgblum); RGBColor target = rgb_hsl2rgb( hue / 360.0f, 1.0f, 0.005f * cfg.rgblum);
// uint32_t color = target.R<<16 | target.G<<8 | target.B; //uint32_t color = target.R<<16 | target.G<<8 | target.B;
rgb_led[0] = Rgb(target.R, target.G, target.B); rgb_led[0] = Rgb(target.R, target.G, target.B);
} }
// Show // Show

View File

@ -3,26 +3,27 @@
// value for HSL color // value for HSL color
// see http://www.workwithcolor.com/blue-color-hue-range-01.htm // see http://www.workwithcolor.com/blue-color-hue-range-01.htm
#define COLOR_RED 0 #define COLOR_RED 0
#define COLOR_ORANGE 30 #define COLOR_ORANGE 30
#define COLOR_ORANGE_YELLOW 45 #define COLOR_ORANGE_YELLOW 45
#define COLOR_YELLOW 60 #define COLOR_YELLOW 60
#define COLOR_YELLOW_GREEN 90 #define COLOR_YELLOW_GREEN 90
#define COLOR_GREEN 120 #define COLOR_GREEN 120
#define COLOR_GREEN_CYAN 165 #define COLOR_GREEN_CYAN 165
#define COLOR_CYAN 180 #define COLOR_CYAN 180
#define COLOR_CYAN_BLUE 210 #define COLOR_CYAN_BLUE 210
#define COLOR_BLUE 240 #define COLOR_BLUE 240
#define COLOR_BLUE_MAGENTA 275 #define COLOR_BLUE_MAGENTA 275
#define COLOR_MAGENTA 300 #define COLOR_MAGENTA 300
#define COLOR_PINK 350 #define COLOR_PINK 350
#define COLOR_WHITE 360 #define COLOR_WHITE 360
#define COLOR_NONE 999 #define COLOR_NONE 999
struct RGBColor { struct RGBColor
uint8_t R; {
uint8_t G; uint8_t R;
uint8_t B; uint8_t G;
uint8_t B;
}; };
// Exported Functions // Exported Functions

View File

@ -36,52 +36,48 @@
#include <inttypes.h> #include <inttypes.h>
uint32_t rokkit(const char *data, int len) { uint32_t rokkit(const char * data, int len) {
uint32_t hash, tmp; uint32_t hash, tmp;
int rem; int rem;
if (len <= 0 || data == 0) if (len <= 0 || data == 0) return 0;
return 0; hash = len;
hash = len; rem = len & 3;
rem = len & 3; len >>= 2;
len >>= 2;
/* Main loop */ /* Main loop */
while (len > 0) { while (len > 0) {
hash += *((uint16_t *)data); hash += *((uint16_t*)data);
tmp = (*((uint16_t *)(data + 2)) << 11) ^ hash; tmp = (*((uint16_t*)(data+2)) << 11) ^ hash;
hash = (hash << 16) ^ tmp; hash = (hash << 16) ^ tmp;
data += 2 * 2; data += 2*2;
hash += hash >> 11; hash += hash >> 11;
len--; len--;
} }
/* Handle end cases */ /* Handle end cases */
switch (rem) { switch (rem) {
case 3: case 3: hash += *((uint16_t*)data);
hash += *((uint16_t *)data); hash ^= hash << 16;
hash ^= hash << 16; hash ^= ((signed char)data[2]) << 18;
hash ^= ((signed char)data[2]) << 18; hash += hash >> 11;
hash += hash >> 11; break;
break; case 2: hash += *((uint16_t*)data);
case 2: hash ^= hash << 11;
hash += *((uint16_t *)data); hash += hash >> 17;
hash ^= hash << 11; break;
case 1: hash += (signed char)*data;
hash ^= hash << 10;
hash += hash >> 1;
}
/* Force "avalanching" of final 127 bits */
hash ^= hash << 3;
hash += hash >> 5;
hash ^= hash << 4;
hash += hash >> 17; hash += hash >> 17;
break; hash ^= hash << 25;
case 1: hash += hash >> 6;
hash += (signed char)*data;
hash ^= hash << 10;
hash += hash >> 1;
}
/* Force "avalanching" of final 127 bits */ return hash;
hash ^= hash << 3;
hash += hash >> 5;
hash ^= hash << 4;
hash += hash >> 17;
hash ^= hash << 25;
hash += hash >> 6;
return hash;
} }

File diff suppressed because it is too large Load Diff