battery percentage calculation improved

This commit is contained in:
Klaus K Wilting 2020-04-13 22:07:26 +02:00
parent e40693ec88
commit 316517337a
4 changed files with 86 additions and 17 deletions

View File

@ -7,6 +7,7 @@
#include "i2c.h" #include "i2c.h"
#include "reset.h" #include "reset.h"
#include "lorawan.h"
#define DEFAULT_VREF 1100 // tbd: use adc2_vref_to_gpio() for better estimate #define DEFAULT_VREF 1100 // tbd: use adc2_vref_to_gpio() for better estimate
#define NO_OF_SAMPLES 64 // we do some multisampling to get better values #define NO_OF_SAMPLES 64 // we do some multisampling to get better values
@ -15,11 +16,12 @@
#define BAT_MAX_VOLTAGE 4200 // millivolts #define BAT_MAX_VOLTAGE 4200 // millivolts
#endif #endif
#ifndef BAT_MIN_VOLTAGE #ifndef BAT_MIN_VOLTAGE
#define BAT_MIN_VOLTAGE 2800 // millivolts #define BAT_MIN_VOLTAGE 3100 // millivolts
#endif #endif
typedef uint8_t (*mapFn_t)(uint16_t, uint16_t, uint16_t);
uint16_t read_voltage(void); uint16_t read_voltage(void);
uint8_t read_battlevel(void);
void calibrate_voltage(void); void calibrate_voltage(void);
bool batt_sufficient(void); bool batt_sufficient(void);
@ -34,4 +36,67 @@ void AXP192_showstatus(void);
#endif // HAS_PMU #endif // HAS_PMU
// The following map functions were taken from
/*
Battery.h - Battery library
Copyright (c) 2014 Roberto Lo Giacco.
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as
published by the Free Software Foundation, either version 3 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
//
// Plots of the functions below available at
// https://www.desmos.com/calculator/x0esk5bsrk
//
/**
* Symmetric sigmoidal approximation
* https://www.desmos.com/calculator/7m9lu26vpy
*
* c - c / (1 + k*x/v)^3
*/
static inline uint8_t sigmoidal(uint16_t voltage, uint16_t minVoltage, uint16_t maxVoltage) {
// slow
// uint8_t result = 110 - (110 / (1 + pow(1.468 * (voltage - minVoltage)/(maxVoltage - minVoltage), 6)));
// steep
// uint8_t result = 102 - (102 / (1 + pow(1.621 * (voltage - minVoltage)/(maxVoltage - minVoltage), 8.1)));
// normal
uint8_t result = 105 - (105 / (1 + pow(1.724 * (voltage - minVoltage)/(maxVoltage - minVoltage), 5.5)));
return result >= 100 ? 100 : result;
}
/**
* Asymmetric sigmoidal approximation
* https://www.desmos.com/calculator/oyhpsu8jnw
*
* c - c / [1 + (k*x/v)^4.5]^3
*/
static inline uint8_t asigmoidal(uint16_t voltage, uint16_t minVoltage, uint16_t maxVoltage) {
uint8_t result = 101 - (101 / pow(1 + pow(1.33 * (voltage - minVoltage)/(maxVoltage - minVoltage) ,4.5), 3));
return result >= 100 ? 100 : result;
}
/**
* Linear mapping
* https://www.desmos.com/calculator/sowyhttjta
*
* x * 100 / v
*/
static inline uint8_t linear(uint16_t voltage, uint16_t minVoltage, uint16_t maxVoltage) {
return (unsigned long)(voltage - minVoltage) * 100 / (maxVoltage - minVoltage);
}
uint8_t read_battlevel(mapFn_t mapFunction = &sigmoidal);
#endif #endif

View File

@ -68,10 +68,6 @@ void doHousekeeping() {
#if (defined BAT_MEASURE_ADC || defined HAS_PMU) #if (defined BAT_MEASURE_ADC || defined HAS_PMU)
batt_level = read_battlevel(); batt_level = read_battlevel();
ESP_LOGI(TAG, "Battery: %d%%", batt_level); ESP_LOGI(TAG, "Battery: %d%%", batt_level);
#if (HAS_LORA)
// to come with future LMIC version
// lora_setBattLevel(batt_level);
#endif
#ifdef HAS_PMU #ifdef HAS_PMU
AXP192_showstatus(); AXP192_showstatus();
#endif #endif

View File

@ -485,12 +485,10 @@ void lora_setBattLevel(uint8_t batt_percent) {
#endif // HAS_PMU #endif // HAS_PMU
else else
lmic_batt_level = static_cast<uint8_t>( lmic_batt_level =
(float)batt_percent / batt_percent / 100.0 * (MCMD_DEVS_BATT_MAX - MCMD_DEVS_BATT_MIN + 1);
(float)(MCMD_DEVS_BATT_MAX - MCMD_DEVS_BATT_MIN + 1) * 100.0f);
LMIC_setBattLevel(lmic_batt_level); LMIC_setBattLevel(lmic_batt_level);
ESP_LOGD(TAG, "lmic_batt_level = %d", lmic_batt_level);
} }
// event EV_RXCOMPLETE message handler // event EV_RXCOMPLETE message handler

View File

@ -210,19 +210,29 @@ uint16_t read_voltage(void) {
return voltage; return voltage;
} }
uint8_t read_battlevel() { uint8_t read_battlevel(mapFn_t mapFunction) {
// return the battery level in values 0 ... 255 [percent], // returns the estimated battery level in values 0 ... 100 [percent],
// values > 100 probably mean external power, depending on hardware
const uint16_t batt_voltage = read_voltage(); const uint16_t batt_voltage = read_voltage();
float batt_percent_fl = (float)(batt_voltage - BAT_MIN_VOLTAGE) / uint8_t batt_percent;
(float)(BAT_MAX_VOLTAGE - BAT_MIN_VOLTAGE) * 100.0f;
const uint8_t batt_percent = static_cast<uint8_t>(batt_percent_fl);
ESP_LOGD(TAG, "batt_voltage = %dmV / batt_percent = %u%%", batt_voltage, if (batt_voltage <= BAT_MIN_VOLTAGE)
batt_percent = 0;
else if (batt_voltage >= BAT_MAX_VOLTAGE)
batt_percent = 100;
else
batt_percent =
(*mapFunction)(batt_voltage, BAT_MIN_VOLTAGE, BAT_MAX_VOLTAGE);
ESP_LOGD(TAG, "batt_voltage = %dmV / batt_percent = %d%%", batt_voltage,
batt_percent); batt_percent);
#if (HAS_LORA)
// to come with future LMIC version
// lora_setBattLevel(batt_percent);
#endif
return batt_percent; return batt_percent;
} }