timesync fixes (using ostime_t now)

This commit is contained in:
Verkehrsrot 2019-03-17 19:24:50 +01:00
parent cb65d0ed6b
commit 2a55e9a8c6
3 changed files with 31 additions and 27 deletions

View File

@ -7,7 +7,7 @@
#include "timekeeper.h" #include "timekeeper.h"
#define TIME_SYNC_SAMPLES 2 // number of time requests for averaging #define TIME_SYNC_SAMPLES 2 // number of time requests for averaging
#define TIME_SYNC_CYCLE 2 // seconds between two time requests #define TIME_SYNC_CYCLE 20 // seconds between two time requests
#define TIME_SYNC_TIMEOUT 120 // timeout seconds waiting for timeserver answer #define TIME_SYNC_TIMEOUT 120 // timeout seconds waiting for timeserver answer
#define TIME_SYNC_TRIGGER 100 // time deviation in millisec triggering a sync #define TIME_SYNC_TRIGGER 100 // time deviation in millisec triggering a sync
#define TIME_SYNC_FRAME_LENGTH 0x06 // timeserver answer frame length #define TIME_SYNC_FRAME_LENGTH 0x06 // timeserver answer frame length

View File

@ -490,6 +490,9 @@ void user_request_network_time_callback(void *pVoidUserUTCTime,
// Update system time with time read from the network // Update system time with time read from the network
if (timeIsValid(*pUserUTCTime)) { if (timeIsValid(*pUserUTCTime)) {
setTime(*pUserUTCTime); setTime(*pUserUTCTime);
#ifdef HAS_RTC
set_rtctime(*pUserUTCTime); // calibrate RTC if we have one
#endif
timeSource = _lora; timeSource = _lora;
timesyncer.attach(TIME_SYNC_INTERVAL * 60, timeSync); // regular repeat timesyncer.attach(TIME_SYNC_INTERVAL * 60, timeSync); // regular repeat
ESP_LOGI(TAG, "Received recent time from LoRa"); ESP_LOGI(TAG, "Received recent time from LoRa");

View File

@ -20,8 +20,8 @@ static const char TAG[] = __FILE__;
TaskHandle_t timeSyncReqTask; TaskHandle_t timeSyncReqTask;
static uint8_t time_sync_seqNo{}; static uint8_t time_sync_seqNo = 0;
static bool lora_time_sync_pending{false}; static bool lora_time_sync_pending = false;
typedef std::chrono::system_clock myClock; typedef std::chrono::system_clock myClock;
typedef myClock::time_point myClock_timepoint; typedef myClock::time_point myClock_timepoint;
@ -44,8 +44,8 @@ void send_timesync_req() {
lora_time_sync_pending = true; lora_time_sync_pending = true;
// initialize timestamp array // clear timestamp array
for (uint8_t i{}; i < TIME_SYNC_SAMPLES; i++) for (uint8_t i = 0; i < TIME_SYNC_SAMPLES; i++)
time_sync_tx[i] = time_sync_rx[i] = myClock_timepoint(); time_sync_tx[i] = time_sync_rx[i] = myClock_timepoint();
// kick off temporary task for timeserver handshake processing // kick off temporary task for timeserver handshake processing
@ -63,12 +63,11 @@ void send_timesync_req() {
// task for sending time sync requests // task for sending time sync requests
void process_timesync_req(void *taskparameter) { void process_timesync_req(void *taskparameter) {
uint8_t k{}; uint32_t seq_no = 0, time_to_set_us, time_to_set_ms;
uint16_t time_to_set_fraction_msec; uint16_t time_to_set_fraction_msec;
uint32_t seq_no{}, time_to_set_us; uint8_t k = 0, i = 0;
long long int time_to_set_ms;
time_t time_to_set; time_t time_to_set;
auto time_offset{myClock_msecTick::zero()}; auto time_offset = myClock_msecTick::zero();
// wait until we are joined // wait until we are joined
while (!LMIC.devaddr) { while (!LMIC.devaddr) {
@ -76,7 +75,7 @@ void process_timesync_req(void *taskparameter) {
} }
// enqueue timestamp samples in lora sendqueue // enqueue timestamp samples in lora sendqueue
for (uint8_t i{}; i < TIME_SYNC_SAMPLES; i++) { for (uint8_t i = 0; i < TIME_SYNC_SAMPLES; i++) {
// wrap around seqNo 0 .. 254 // wrap around seqNo 0 .. 254
time_sync_seqNo = (time_sync_seqNo >= 255) ? 0 : time_sync_seqNo + 1; time_sync_seqNo = (time_sync_seqNo >= 255) ? 0 : time_sync_seqNo + 1;
@ -122,20 +121,19 @@ void process_timesync_req(void *taskparameter) {
ESP_LOGD(TAG, "[%0.3f] avg time diff: %0.3f sec", millis() / 1000.0, ESP_LOGD(TAG, "[%0.3f] avg time diff: %0.3f sec", millis() / 1000.0,
myClock_secTick(time_offset).count()); myClock_secTick(time_offset).count());
// calculate absolute time with millisecond precision // calculate absolute time offset with millisecond precision using time base
time_to_set_ms = (long long)now(time_to_set_us) * 1000LL + // of LMIC os, since we use LMIC's ostime_t txEnd as tx timestamp
time_to_set_us / 1000LL + time_offset.count(); time_offset += milliseconds(osticks2ms(os_getTime()));
// convert to seconds // convert to seconds
time_to_set = (time_t)(time_to_set_ms / 1000LL); time_to_set = static_cast<time_t>(myClock_secTick(time_offset).count());
// calculate fraction milliseconds // calculate fraction milliseconds
time_to_set_fraction_msec = (uint16_t)(time_to_set_ms % 1000LL); time_to_set_fraction_msec = static_cast<uint16_t>(time_offset.count() % 1000);
ESP_LOGD(TAG, "[%0.3f] Calculated UTC epoch time: %d.%03d sec", ESP_LOGD(TAG, "[%0.3f] Calculated UTC epoch time: %d.%03d sec",
millis() / 1000.0, time_to_set, time_to_set_fraction_msec); millis() / 1000.0, time_to_set, time_to_set_fraction_msec);
// adjust system time // adjust system time
if (timeIsValid(time_to_set)) { if (timeIsValid(time_to_set)) {
if (abs(time_offset.count()) >= if (abs(time_offset.count()) >=
TIME_SYNC_TRIGGER) { // milliseconds threshold TIME_SYNC_TRIGGER) { // milliseconds threshold
@ -150,9 +148,12 @@ void process_timesync_req(void *taskparameter) {
CLOCKIRQ(); // fire clock pps interrupt CLOCKIRQ(); // fire clock pps interrupt
} }
setTime(time_to_set + 1); setTime(++time_to_set); // +1 sec after waiting for top of seceond
timeSource = _lora; #ifdef HAS_RTC
set_rtctime(time_to_set); // calibrate RTC if we have one
#endif
timeSource = _lora;
timesyncer.attach(TIME_SYNC_INTERVAL * 60, timesyncer.attach(TIME_SYNC_INTERVAL * 60,
timeSync); // set to regular repeat timeSync); // set to regular repeat
ESP_LOGI(TAG, "[%0.3f] Timesync finished, time adjusted by %.3f sec", ESP_LOGI(TAG, "[%0.3f] Timesync finished, time adjusted by %.3f sec",
@ -170,15 +171,15 @@ finish:
} }
// called from lorawan.cpp after time_sync_req was sent // called from lorawan.cpp after time_sync_req was sent
void store_time_sync_req(uint32_t t_millisec) { void store_time_sync_req(uint32_t t_txEnd_ms) {
uint8_t k{time_sync_seqNo % TIME_SYNC_SAMPLES}; uint8_t k = time_sync_seqNo % TIME_SYNC_SAMPLES;
time_sync_tx[k] += milliseconds(t_millisec); time_sync_tx[k] += milliseconds(t_txEnd_ms);
ESP_LOGD(TAG, "[%0.3f] Timesync request #%d sent at %d.%03d", ESP_LOGD(TAG, "[%0.3f] Timesync request #%d sent at %d.%03d",
millis() / 1000.0, time_sync_seqNo, t_millisec / 1000, millis() / 1000.0, time_sync_seqNo, t_txEnd_ms / 1000,
t_millisec % 1000); t_txEnd_ms % 1000);
} }
// process timeserver timestamp answer, called from lorawan.cpp // process timeserver timestamp answer, called from lorawan.cpp
@ -188,16 +189,16 @@ int recv_timesync_ans(uint8_t buf[], uint8_t buf_len) {
if ((!lora_time_sync_pending) || (buf_len != TIME_SYNC_FRAME_LENGTH)) if ((!lora_time_sync_pending) || (buf_len != TIME_SYNC_FRAME_LENGTH))
return 0; // failure return 0; // failure
uint8_t seq_no{buf[0]}, k{seq_no % TIME_SYNC_SAMPLES}; uint8_t seq_no = buf[0], k = seq_no % TIME_SYNC_SAMPLES;
uint16_t timestamp_msec; // convert 1/250th sec fractions to ms uint16_t timestamp_msec; // convert 1/250th sec fractions to ms
uint32_t timestamp_sec; uint32_t timestamp_sec;
// get the timeserver time. // get the timeserver time.
// The first 4 bytes contain the UTC seconds since unix epoch. // The first 4 bytes contain the UTC seconds since unix epoch.
// Octet order is little endian. Casts are necessary, because buf is an array // Octet order is big endian. Casts are necessary, because buf is an array
// of single byte values, and they might overflow when shifted // of single byte values, and they might overflow when shifted
timestamp_sec = ((uint32_t)buf[1]) | (((uint32_t)buf[2]) << 8) | timestamp_sec = ((uint32_t)buf[4]) | (((uint32_t)buf[3]) << 8) |
(((uint32_t)buf[3]) << 16) | (((uint32_t)buf[4]) << 24); (((uint32_t)buf[2]) << 16) | (((uint32_t)buf[1]) << 24);
// The 5th byte contains the fractional seconds in 2^-8 second steps // The 5th byte contains the fractional seconds in 2^-8 second steps
timestamp_msec = 4 * buf[5]; timestamp_msec = 4 * buf[5];