Merge pull request #562 from cyberman54/development
Reworked LoRaWAN timesync code
This commit is contained in:
commit
253b17bd91
@ -46,7 +46,7 @@ void lora_queuereset(void);
|
|||||||
void IRAM_ATTR myEventCallback(void *pUserData, ev_t ev);
|
void IRAM_ATTR myEventCallback(void *pUserData, ev_t ev);
|
||||||
void IRAM_ATTR myRxCallback(void *pUserData, uint8_t port,
|
void IRAM_ATTR myRxCallback(void *pUserData, uint8_t port,
|
||||||
const uint8_t *pMsg, size_t nMsg);
|
const uint8_t *pMsg, size_t nMsg);
|
||||||
void IRAM_ATTR myTxCallback(void *pUserData, int fSuccess);
|
//void IRAM_ATTR myTxCallback(void *pUserData, int fSuccess);
|
||||||
void mac_decode(const uint8_t cmd[], const uint8_t cmdlen, const mac_t table[],
|
void mac_decode(const uint8_t cmd[], const uint8_t cmdlen, const mac_t table[],
|
||||||
const uint8_t tablesize);
|
const uint8_t tablesize);
|
||||||
//u1_t os_getBattLevel(void);
|
//u1_t os_getBattLevel(void);
|
||||||
|
@ -8,15 +8,23 @@
|
|||||||
|
|
||||||
//#define TIME_SYNC_TRIGGER 100 // threshold for time sync [milliseconds]
|
//#define TIME_SYNC_TRIGGER 100 // threshold for time sync [milliseconds]
|
||||||
#define TIME_SYNC_FRAME_LENGTH 0x07 // timeserver answer frame length [bytes]
|
#define TIME_SYNC_FRAME_LENGTH 0x07 // timeserver answer frame length [bytes]
|
||||||
#define TIME_SYNC_FIXUP 4 // calibration to fixup processing time [milliseconds]
|
#define TIME_SYNC_FIXUP 16 // empirical calibration to fixup processing time [milliseconds]
|
||||||
#define TIMEREQUEST_MAX_SEQNO 0xf0 // threshold for wrap around seqno
|
#define TIMEREQUEST_MAX_SEQNO 0xfe // threshold for wrap around seqno
|
||||||
|
#define TIMEREQUEST_FINISH \
|
||||||
|
(TIMEREQUEST_MAX_SEQNO + 1) // marker for end of timesync handshake
|
||||||
|
|
||||||
|
enum timesync_t {
|
||||||
|
timesync_tx,
|
||||||
|
timesync_rx,
|
||||||
|
gwtime_sec,
|
||||||
|
gwtime_msec,
|
||||||
|
no_of_timestamps
|
||||||
|
};
|
||||||
|
|
||||||
void timesync_init(void);
|
void timesync_init(void);
|
||||||
void send_timesync_req(void);
|
void send_timesync_req(void);
|
||||||
|
|
||||||
int recv_timesync_ans(const uint8_t buf[], uint8_t buf_len);
|
int recv_timesync_ans(const uint8_t buf[], uint8_t buf_len);
|
||||||
|
|
||||||
void process_timesync_req(void *taskparameter);
|
void process_timesync_req(void *taskparameter);
|
||||||
void store_time_sync_req(uint32_t t_millisec);
|
void store_timestamp(uint32_t timestamp, timesync_t timestamp_type);
|
||||||
|
|
||||||
#endif
|
#endif
|
||||||
|
@ -261,12 +261,24 @@ void lora_send(void *pvParameters) {
|
|||||||
// attempt to transmit payload
|
// attempt to transmit payload
|
||||||
else {
|
else {
|
||||||
|
|
||||||
// switch (LMIC_sendWithCallback_strict(
|
switch (LMIC_setTxData2_strict(SendBuffer.MessagePort, SendBuffer.Message,
|
||||||
switch (LMIC_sendWithCallback(
|
SendBuffer.MessageSize,
|
||||||
SendBuffer.MessagePort, SendBuffer.Message, SendBuffer.MessageSize,
|
(cfg.countermode & 0x02))) {
|
||||||
(cfg.countermode & 0x02), myTxCallback, NULL)) {
|
|
||||||
|
// switch (LMIC_sendWithCallback_strict(
|
||||||
|
// SendBuffer.MessagePort, SendBuffer.Message,
|
||||||
|
// SendBuffer.MessageSize, (cfg.countermode & 0x02), myTxCallback,
|
||||||
|
// &SendBuffer.MessagePort)) {
|
||||||
|
|
||||||
case LMIC_ERROR_SUCCESS:
|
case LMIC_ERROR_SUCCESS:
|
||||||
|
|
||||||
|
#if (TIME_SYNC_LORASERVER)
|
||||||
|
// if last packet sent was a timesync request, store TX timestamp
|
||||||
|
if (SendBuffer.MessagePort == TIMEPORT)
|
||||||
|
// store LMIC time when we started transmit of timesync request
|
||||||
|
store_timestamp(osticks2ms(os_getTime()), timesync_tx);
|
||||||
|
#endif
|
||||||
|
|
||||||
ESP_LOGI(TAG, "%d byte(s) sent to LORA", SendBuffer.MessageSize);
|
ESP_LOGI(TAG, "%d byte(s) sent to LORA", SendBuffer.MessageSize);
|
||||||
break;
|
break;
|
||||||
case LMIC_ERROR_TX_BUSY: // LMIC already has a tx message pending
|
case LMIC_ERROR_TX_BUSY: // LMIC already has a tx message pending
|
||||||
@ -544,6 +556,9 @@ void myRxCallback(void *pUserData, uint8_t port, const uint8_t *pMsg,
|
|||||||
#if (TIME_SYNC_LORASERVER)
|
#if (TIME_SYNC_LORASERVER)
|
||||||
// valid timesync answer -> call timesync processor
|
// valid timesync answer -> call timesync processor
|
||||||
if (port == TIMEPORT) {
|
if (port == TIMEPORT) {
|
||||||
|
// store LMIC time when we received the timesync answer
|
||||||
|
store_timestamp(osticks2ms(os_getTime()), timesync_rx);
|
||||||
|
// get and store gwtime from payload
|
||||||
recv_timesync_ans(pMsg, nMsg);
|
recv_timesync_ans(pMsg, nMsg);
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
@ -555,15 +570,19 @@ void myRxCallback(void *pUserData, uint8_t port, const uint8_t *pMsg,
|
|||||||
} // switch
|
} // switch
|
||||||
}
|
}
|
||||||
|
|
||||||
// transmit complete message handler
|
/*
|
||||||
|
// event TRANSMIT COMPLETE message handler
|
||||||
void myTxCallback(void *pUserData, int fSuccess) {
|
void myTxCallback(void *pUserData, int fSuccess) {
|
||||||
|
|
||||||
#if (TIME_SYNC_LORASERVER)
|
uint8_t *const sendport = (uint8_t *)pUserData;
|
||||||
// if last packet sent was a timesync request, store TX timestamp
|
|
||||||
if (LMIC.pendTxPort == TIMEPORT)
|
if (fSuccess) {
|
||||||
store_time_sync_req(osticks2ms(LMIC.txend)); // milliseconds
|
// LMIC did tx on *sendport -> nothing yet to do here
|
||||||
#endif
|
} else {
|
||||||
|
// LMIC could not tx on *sendport -> error handling yet to come
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
*/
|
||||||
|
|
||||||
// decode LORAWAN MAC message
|
// decode LORAWAN MAC message
|
||||||
void mac_decode(const uint8_t cmd[], const uint8_t cmdlen, const mac_t table[],
|
void mac_decode(const uint8_t cmd[], const uint8_t cmdlen, const mac_t table[],
|
||||||
|
@ -104,11 +104,11 @@ void IRAM_ATTR setMyTime(uint32_t t_sec, uint16_t t_msec,
|
|||||||
timeSource = mytimesource; // set global variable
|
timeSource = mytimesource; // set global variable
|
||||||
timesyncer.attach(TIME_SYNC_INTERVAL * 60, timeSync);
|
timesyncer.attach(TIME_SYNC_INTERVAL * 60, timeSync);
|
||||||
ESP_LOGI(TAG, "[%0.3f] Timesync finished, time was set | source: %c",
|
ESP_LOGI(TAG, "[%0.3f] Timesync finished, time was set | source: %c",
|
||||||
millis() / 1000.0, timeSetSymbols[timeSource]);
|
millis() / 1000.0, timeSetSymbols[mytimesource]);
|
||||||
} else {
|
} else {
|
||||||
timesyncer.attach(TIME_SYNC_INTERVAL_RETRY * 60, timeSync);
|
timesyncer.attach(TIME_SYNC_INTERVAL_RETRY * 60, timeSync);
|
||||||
ESP_LOGI(TAG, "[%0.3f] Timesync failed, invalid time fetched | source: %c",
|
ESP_LOGI(TAG, "[%0.3f] Timesync failed, invalid time fetched | source: %c",
|
||||||
millis() / 1000.0, timeSetSymbols[timeSource]);
|
millis() / 1000.0, timeSetSymbols[mytimesource]);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
141
src/timesync.cpp
141
src/timesync.cpp
@ -16,19 +16,12 @@ algorithm in applications without granted license by the patent holder.
|
|||||||
// Local logging tag
|
// Local logging tag
|
||||||
static const char TAG[] = __FILE__;
|
static const char TAG[] = __FILE__;
|
||||||
|
|
||||||
using namespace std::chrono;
|
|
||||||
|
|
||||||
typedef std::chrono::system_clock myClock;
|
|
||||||
typedef myClock::time_point myClock_timepoint;
|
|
||||||
typedef std::chrono::duration<long long int, std::ratio<1, 1000>>
|
|
||||||
myClock_msecTick;
|
|
||||||
|
|
||||||
TaskHandle_t timeSyncReqTask = NULL;
|
TaskHandle_t timeSyncReqTask = NULL;
|
||||||
|
|
||||||
static uint8_t time_sync_seqNo = (uint8_t)random(TIMEREQUEST_MAX_SEQNO);
|
static uint8_t time_sync_seqNo = (uint8_t)random(TIMEREQUEST_MAX_SEQNO);
|
||||||
|
static uint8_t sample_idx = 0;
|
||||||
static bool timeSyncPending = false;
|
static bool timeSyncPending = false;
|
||||||
static myClock_timepoint time_sync_tx[TIME_SYNC_SAMPLES];
|
static uint32_t timesync_timestamp[TIME_SYNC_SAMPLES][no_of_timestamps] = {0};
|
||||||
static myClock_timepoint time_sync_rx[TIME_SYNC_SAMPLES];
|
|
||||||
|
|
||||||
// send time request message
|
// send time request message
|
||||||
void send_timesync_req() {
|
void send_timesync_req() {
|
||||||
@ -46,37 +39,37 @@ void send_timesync_req() {
|
|||||||
// task for sending time sync requests
|
// task for sending time sync requests
|
||||||
void process_timesync_req(void *taskparameter) {
|
void process_timesync_req(void *taskparameter) {
|
||||||
|
|
||||||
uint8_t k;
|
uint32_t rcv_seq_no = TIMEREQUEST_FINISH, time_offset_ms;
|
||||||
uint16_t time_to_set_fraction_msec;
|
|
||||||
uint32_t seq_no = 0, time_to_set;
|
// this task is an endless loop, waiting in blocked mode, until it is
|
||||||
auto time_offset_ms = myClock_msecTick::zero();
|
// unblocked by send_timesync_req(). It then waits to be notified from
|
||||||
|
// recv_timesync_ans(), which is called from RX callback in lorawan.cpp, each
|
||||||
|
// time a timestamp from timeserver arrived.
|
||||||
|
|
||||||
|
// --- asnychronous part: generate and collect timestamps from gateway ---
|
||||||
|
|
||||||
while (1) {
|
while (1) {
|
||||||
|
|
||||||
// reset all timestamps before next sync run
|
|
||||||
time_offset_ms = myClock_msecTick::zero();
|
|
||||||
for (uint8_t i = 0; i < TIME_SYNC_SAMPLES; i++)
|
|
||||||
time_sync_tx[i] = time_sync_rx[i] = myClock_timepoint();
|
|
||||||
|
|
||||||
// wait for kickoff
|
// wait for kickoff
|
||||||
ulTaskNotifyTake(pdFALSE, portMAX_DELAY);
|
ulTaskNotifyTake(pdFALSE, portMAX_DELAY);
|
||||||
timeSyncPending = true;
|
timeSyncPending = true;
|
||||||
|
time_offset_ms = 0;
|
||||||
|
|
||||||
// wait until we are joined if we are not
|
// wait until we are joined if we are not
|
||||||
while (!LMIC.devaddr) {
|
while (!LMIC.devaddr) {
|
||||||
vTaskDelay(pdMS_TO_TICKS(3000));
|
vTaskDelay(pdMS_TO_TICKS(5000));
|
||||||
}
|
}
|
||||||
|
|
||||||
// collect timestamp samples
|
// trigger and collect timestamp samples
|
||||||
for (uint8_t i = 0; i < TIME_SYNC_SAMPLES; i++) {
|
for (uint8_t i = 0; i < TIME_SYNC_SAMPLES; i++) {
|
||||||
// send sync request to server
|
// send timesync request to timeserver
|
||||||
payload.reset();
|
payload.reset();
|
||||||
payload.addByte(time_sync_seqNo);
|
payload.addByte(time_sync_seqNo);
|
||||||
SendPayload(TIMEPORT, prio_high);
|
SendPayload(TIMEPORT, prio_high);
|
||||||
|
|
||||||
// wait for a valid timestamp from recv_timesync_ans()
|
// wait until recv_timesync_ans() signals a timestamp was received
|
||||||
while (seq_no != time_sync_seqNo) {
|
while (rcv_seq_no != time_sync_seqNo) {
|
||||||
if (xTaskNotifyWait(0x00, ULONG_MAX, &seq_no,
|
if (xTaskNotifyWait(0x00, ULONG_MAX, &rcv_seq_no,
|
||||||
pdMS_TO_TICKS(TIME_SYNC_TIMEOUT * 1000)) ==
|
pdMS_TO_TICKS(TIME_SYNC_TIMEOUT * 1000)) ==
|
||||||
pdFALSE) {
|
pdFALSE) {
|
||||||
ESP_LOGW(TAG, "[%0.3f] Timesync handshake error: timeout",
|
ESP_LOGW(TAG, "[%0.3f] Timesync handshake error: timeout",
|
||||||
@ -85,78 +78,70 @@ void process_timesync_req(void *taskparameter) {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
// process answer
|
ESP_LOGD(TAG, "sample_idx = %d", sample_idx);
|
||||||
k = seq_no % TIME_SYNC_SAMPLES;
|
|
||||||
|
|
||||||
// calculate time diff from collected timestamps
|
// calculate time diff from collected timestamps
|
||||||
time_offset_ms += time_point_cast<milliseconds>(time_sync_rx[k]) -
|
time_offset_ms += timesync_timestamp[sample_idx][timesync_rx] -
|
||||||
time_point_cast<milliseconds>(time_sync_tx[k]);
|
timesync_timestamp[sample_idx][timesync_tx];
|
||||||
|
|
||||||
// wrap around seqNo, keeping it in time port range
|
// increment and maybe wrap around seqNo, keeping it in time port range
|
||||||
time_sync_seqNo++;
|
time_sync_seqNo++;
|
||||||
if (time_sync_seqNo > TIMEREQUEST_MAX_SEQNO) {
|
if (time_sync_seqNo > TIMEREQUEST_MAX_SEQNO) {
|
||||||
time_sync_seqNo = 0;
|
time_sync_seqNo = 0;
|
||||||
}
|
}
|
||||||
|
|
||||||
if (i < TIME_SYNC_SAMPLES - 1) {
|
// increment index for timestamp array
|
||||||
// wait until next cycle
|
sample_idx++;
|
||||||
|
|
||||||
|
// if last cycle, send finish char for closing timesync handshake,
|
||||||
|
// else wait until time has come for next cycle
|
||||||
|
if (i < TIME_SYNC_SAMPLES - 1) { // wait for next cycle
|
||||||
vTaskDelay(pdMS_TO_TICKS(TIME_SYNC_CYCLE * 1000));
|
vTaskDelay(pdMS_TO_TICKS(TIME_SYNC_CYCLE * 1000));
|
||||||
} else { // before sending last time sample...
|
} else { // finish timesync handshake
|
||||||
// ...send flush to open a receive window for last time_sync_answer
|
|
||||||
payload.reset();
|
payload.reset();
|
||||||
payload.addByte(0x99);
|
payload.addByte(TIMEREQUEST_FINISH);
|
||||||
SendPayload(RCMDPORT, prio_high);
|
SendPayload(RCMDPORT, prio_high);
|
||||||
// ...send a alive open a receive window for last time_sync_answer
|
// open a receive window to get last time_sync_answer instantly
|
||||||
LMIC_sendAlive();
|
LMIC_sendAlive();
|
||||||
}
|
}
|
||||||
|
|
||||||
} // end of for loop to collect timestamp samples
|
} // end of for loop to collect timestamp samples
|
||||||
|
|
||||||
|
// --- time critial part: evaluate timestamps and calculate time ---
|
||||||
|
|
||||||
// mask application irq to ensure accurate timing
|
// mask application irq to ensure accurate timing
|
||||||
mask_user_IRQ();
|
mask_user_IRQ();
|
||||||
|
|
||||||
// average time offset over all collected diffs
|
// average time offset over the summed up difference
|
||||||
|
// + add msec from recent gateway time, found with last sample_idx
|
||||||
|
// + apply a compensation constant TIME_SYNC_FIXUP for processing time
|
||||||
time_offset_ms /= TIME_SYNC_SAMPLES;
|
time_offset_ms /= TIME_SYNC_SAMPLES;
|
||||||
|
time_offset_ms +=
|
||||||
|
timesync_timestamp[sample_idx - 1][gwtime_msec] + TIME_SYNC_FIXUP;
|
||||||
|
|
||||||
// --------- do we need this? ---------
|
// calculate absolute time in UTC epoch: take latest time received from
|
||||||
// calculate time offset with millisecond precision using LMIC's time base,
|
// gateway, convert to whole seconds, round to ceil, add fraction seconds
|
||||||
// since we use LMIC's ostime_t txEnd as tx timestamp.
|
setMyTime(timesync_timestamp[sample_idx - 1][gwtime_sec] +
|
||||||
//
|
time_offset_ms / 1000,
|
||||||
// time_offset_ms += milliseconds(osticks2ms(os_getTime())) -
|
time_offset_ms % 1000, _lora);
|
||||||
// milliseconds(millis());
|
|
||||||
// --------- not sure -----------------
|
|
||||||
|
|
||||||
// Apply calibration const to compensate processing time.
|
// end of time critical section: release app irq lock
|
||||||
time_offset_ms += milliseconds(TIME_SYNC_FIXUP);
|
unmask_user_IRQ();
|
||||||
|
|
||||||
// calculate absolute time in UTC epoch: convert to whole seconds, round
|
|
||||||
// to ceil, and calculate fraction milliseconds
|
|
||||||
time_to_set = (uint32_t)(time_offset_ms.count() / 1000) + 1;
|
|
||||||
// calculate fraction milliseconds
|
|
||||||
time_to_set_fraction_msec = (uint16_t)(time_offset_ms.count() % 1000);
|
|
||||||
|
|
||||||
setMyTime(time_to_set, time_to_set_fraction_msec, _lora);
|
|
||||||
|
|
||||||
finish:
|
finish:
|
||||||
// end of time critical section: release app irq lock
|
|
||||||
timeSyncPending = false;
|
timeSyncPending = false;
|
||||||
unmask_user_IRQ();
|
|
||||||
|
|
||||||
} // infinite while(1)
|
} // infinite while(1)
|
||||||
}
|
}
|
||||||
|
|
||||||
// called from lorawan.cpp after time_sync_req was sent
|
// called from lorawan.cpp
|
||||||
void store_time_sync_req(uint32_t timestamp) {
|
void store_timestamp(uint32_t timestamp, timesync_t timestamp_type) {
|
||||||
|
|
||||||
// if no timesync handshake is pending then exit
|
ESP_LOGD(TAG, "[%0.3f] seq#%d[%d]: timestamp(t%d)=%d",
|
||||||
if (!timeSyncPending)
|
millis() / 1000.0, time_sync_seqNo, sample_idx, timestamp_type,
|
||||||
return;
|
timestamp);
|
||||||
|
|
||||||
uint8_t k = time_sync_seqNo % TIME_SYNC_SAMPLES;
|
timesync_timestamp[sample_idx][timestamp_type] = timestamp;
|
||||||
time_sync_tx[k] += milliseconds(timestamp);
|
|
||||||
|
|
||||||
ESP_LOGD(TAG, "[%0.3f] Timesync request #%d of %d sent at %d.%03d",
|
|
||||||
millis() / 1000.0, k + 1, TIME_SYNC_SAMPLES, timestamp / 1000,
|
|
||||||
timestamp % 1000);
|
|
||||||
}
|
}
|
||||||
|
|
||||||
// process timeserver timestamp answer, called by myRxCallback() in lorawan.cpp
|
// process timeserver timestamp answer, called by myRxCallback() in lorawan.cpp
|
||||||
@ -176,7 +161,7 @@ int recv_timesync_ans(const uint8_t buf[], const uint8_t buf_len) {
|
|||||||
if (!timeSyncPending)
|
if (!timeSyncPending)
|
||||||
return 0; // failure
|
return 0; // failure
|
||||||
|
|
||||||
// extract 1 byte timerequest sequence number from buffer
|
// extract 1 byte timerequest sequence number from payload
|
||||||
uint8_t seq_no = buf[0];
|
uint8_t seq_no = buf[0];
|
||||||
buf++;
|
buf++;
|
||||||
|
|
||||||
@ -193,16 +178,14 @@ int recv_timesync_ans(const uint8_t buf[], const uint8_t buf_len) {
|
|||||||
|
|
||||||
else { // we received a probably valid time frame
|
else { // we received a probably valid time frame
|
||||||
|
|
||||||
uint8_t k = seq_no % TIME_SYNC_SAMPLES;
|
|
||||||
|
|
||||||
// pointers to 4 bytes containing UTC seconds since unix epoch, msb
|
// pointers to 4 bytes containing UTC seconds since unix epoch, msb
|
||||||
uint32_t timestamp_sec, *timestamp_ptr;
|
uint32_t timestamp_sec, *timestamp_ptr;
|
||||||
|
|
||||||
// extract 1 byte timezone from buffer (one step being 15min * 60s = 900s)
|
// extract 1 byte timezone from payload (one step being 15min * 60s = 900s)
|
||||||
// uint32_t timezone_sec = buf[0] * 900; // for future use
|
// uint32_t timezone_sec = buf[0] * 900; // for future use
|
||||||
buf++;
|
buf++;
|
||||||
|
|
||||||
// extract 4 bytes timestamp from buffer
|
// extract 4 bytes timestamp from payload
|
||||||
// and convert it to uint32_t, octet order is big endian
|
// and convert it to uint32_t, octet order is big endian
|
||||||
timestamp_ptr = (uint32_t *)buf;
|
timestamp_ptr = (uint32_t *)buf;
|
||||||
// swap byte order from msb to lsb, note: this is platform dependent
|
// swap byte order from msb to lsb, note: this is platform dependent
|
||||||
@ -211,15 +194,17 @@ int recv_timesync_ans(const uint8_t buf[], const uint8_t buf_len) {
|
|||||||
// extract 1 byte fractional seconds in 2^-8 second steps
|
// extract 1 byte fractional seconds in 2^-8 second steps
|
||||||
// (= 1/250th sec), we convert this to ms
|
// (= 1/250th sec), we convert this to ms
|
||||||
uint16_t timestamp_msec = 4 * buf[0];
|
uint16_t timestamp_msec = 4 * buf[0];
|
||||||
|
// calculate absolute time received from gateway
|
||||||
// construct the timepoint when message was seen on gateway
|
time_t t = timestamp_sec + timestamp_msec / 1000;
|
||||||
time_sync_rx[k] += seconds(timestamp_sec) + milliseconds(timestamp_msec);
|
|
||||||
|
|
||||||
// we guess timepoint is recent if it is newer than code compile date
|
// we guess timepoint is recent if it is newer than code compile date
|
||||||
if (timeIsValid(myClock::to_time_t(time_sync_rx[k]))) {
|
if (timeIsValid(t)) {
|
||||||
ESP_LOGD(TAG, "[%0.3f] Timesync request #%d of %d rcvd at %d.%03d",
|
ESP_LOGD(TAG, "[%0.3f] Timesync request seq#%d rcvd at %0.3f",
|
||||||
millis() / 1000.0, k + 1, TIME_SYNC_SAMPLES, timestamp_sec,
|
millis() / 1000.0, seq_no, osticks2ms(os_getTime()) / 1000.0);
|
||||||
timestamp_msec);
|
|
||||||
|
// store time received from gateway
|
||||||
|
store_timestamp(timestamp_sec, gwtime_sec);
|
||||||
|
store_timestamp(timestamp_msec, gwtime_msec);
|
||||||
|
|
||||||
// inform processing task
|
// inform processing task
|
||||||
xTaskNotify(timeSyncReqTask, seq_no, eSetBits);
|
xTaskNotify(timeSyncReqTask, seq_no, eSetBits);
|
||||||
|
Loading…
Reference in New Issue
Block a user