timekeeper fixes
This commit is contained in:
parent
f944725cff
commit
182f850d23
@ -1,359 +0,0 @@
|
||||
/*
|
||||
time.c - low level time and date functions
|
||||
Copyright (c) Michael Margolis 2009-2014
|
||||
|
||||
This library is free software; you can redistribute it and/or
|
||||
modify it under the terms of the GNU Lesser General Public
|
||||
License as published by the Free Software Foundation; either
|
||||
version 2.1 of the License, or (at your option) any later version.
|
||||
|
||||
This library is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
Lesser General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU Lesser General Public
|
||||
License along with this library; if not, write to the Free Software
|
||||
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
||||
|
||||
1.0 6 Jan 2010 - initial release
|
||||
1.1 12 Feb 2010 - fixed leap year calculation error
|
||||
1.2 1 Nov 2010 - fixed setTime bug (thanks to Korman for this)
|
||||
1.3 24 Mar 2012 - many edits by Paul Stoffregen: fixed timeStatus() to update
|
||||
status, updated examples for Arduino 1.0, fixed ARM
|
||||
compatibility issues, added TimeArduinoDue and TimeTeensy3
|
||||
examples, add error checking and messages to RTC examples,
|
||||
add examples to DS1307RTC library.
|
||||
1.4 5 Sep 2014 - compatibility with Arduino 1.5.7
|
||||
*/
|
||||
|
||||
#if ARDUINO >= 100
|
||||
#include <Arduino.h>
|
||||
#else
|
||||
#include <WProgram.h>
|
||||
#endif
|
||||
|
||||
#define TIMELIB_ENABLE_MILLIS
|
||||
#define usePPS
|
||||
|
||||
#include "microTimeLib.h"
|
||||
|
||||
// Convert days since epoch to week day. Sunday is day 1.
|
||||
#define DAYS_TO_WDAY(x) (((x) + 4) % 7) + 1
|
||||
|
||||
static tmElements_t cacheElements; // a cache of time elements
|
||||
static time_t cacheTime; // the time the cache was updated
|
||||
static uint32_t syncInterval = 300; // time sync will be attempted after this many seconds
|
||||
|
||||
void refreshCache(time_t t) {
|
||||
if (t != cacheTime) {
|
||||
breakTime(t, cacheElements);
|
||||
cacheTime = t;
|
||||
}
|
||||
}
|
||||
|
||||
int hour() { // the hour now
|
||||
return hour(now());
|
||||
}
|
||||
|
||||
int hour(time_t t) { // the hour for the given time
|
||||
refreshCache(t);
|
||||
return cacheElements.Hour;
|
||||
}
|
||||
|
||||
int hourFormat12() { // the hour now in 12 hour format
|
||||
return hourFormat12(now());
|
||||
}
|
||||
|
||||
int hourFormat12(time_t t) { // the hour for the given time in 12 hour format
|
||||
refreshCache(t);
|
||||
if( cacheElements.Hour == 0 )
|
||||
return 12; // 12 midnight
|
||||
else if( cacheElements.Hour > 12)
|
||||
return cacheElements.Hour - 12 ;
|
||||
else
|
||||
return cacheElements.Hour ;
|
||||
}
|
||||
|
||||
uint8_t isAM() { // returns true if time now is AM
|
||||
return !isPM(now());
|
||||
}
|
||||
|
||||
uint8_t isAM(time_t t) { // returns true if given time is AM
|
||||
return !isPM(t);
|
||||
}
|
||||
|
||||
uint8_t isPM() { // returns true if PM
|
||||
return isPM(now());
|
||||
}
|
||||
|
||||
uint8_t isPM(time_t t) { // returns true if PM
|
||||
return (hour(t) >= 12);
|
||||
}
|
||||
|
||||
int minute() {
|
||||
return minute(now());
|
||||
}
|
||||
|
||||
int minute(time_t t) { // the minute for the given time
|
||||
refreshCache(t);
|
||||
return cacheElements.Minute;
|
||||
}
|
||||
|
||||
int second() {
|
||||
return second(now());
|
||||
}
|
||||
|
||||
int second(time_t t) { // the second for the given time
|
||||
refreshCache(t);
|
||||
return cacheElements.Second;
|
||||
}
|
||||
|
||||
int millisecond() {
|
||||
uint32_t ms;
|
||||
now(ms);
|
||||
ms = ms / 1000;
|
||||
return (int)ms;
|
||||
}
|
||||
|
||||
int microsecond() {
|
||||
uint32_t us;
|
||||
now(us);
|
||||
return (int)us;
|
||||
}
|
||||
|
||||
int day(){
|
||||
return(day(now()));
|
||||
}
|
||||
|
||||
int day(time_t t) { // the day for the given time (0-6)
|
||||
refreshCache(t);
|
||||
return cacheElements.Day;
|
||||
}
|
||||
|
||||
int weekday() { // Sunday is day 1
|
||||
return weekday(now());
|
||||
}
|
||||
|
||||
int weekday(time_t t) {
|
||||
refreshCache(t);
|
||||
return cacheElements.Wday;
|
||||
}
|
||||
|
||||
int month(){
|
||||
return month(now());
|
||||
}
|
||||
|
||||
int month(time_t t) { // the month for the given time
|
||||
refreshCache(t);
|
||||
return cacheElements.Month;
|
||||
}
|
||||
|
||||
int year() { // as in Processing, the full four digit year: (2009, 2010 etc)
|
||||
return year(now());
|
||||
}
|
||||
|
||||
int year(time_t t) { // the year for the given time
|
||||
refreshCache(t);
|
||||
return tmYearToCalendar(cacheElements.Year);
|
||||
}
|
||||
|
||||
/*============================================================================*/
|
||||
/* functions to convert to and from system time */
|
||||
/* These are for interfacing with time serivces and are not normally needed in a sketch */
|
||||
|
||||
// leap year calulator expects year argument as years offset from 1970
|
||||
#define LEAP_YEAR(Y) ( ((1970+(Y))>0) && !((1970+(Y))%4) && ( ((1970+(Y))%100) || !((1970+(Y))%400) ) )
|
||||
#define daysInYear(year) ((time_t) (LEAP_YEAR(year) ? 366 : 365))
|
||||
|
||||
static const uint8_t monthDays[]={31,28,31,30,31,30,31,31,30,31,30,31}; // API starts months from 1, this array starts from 0
|
||||
|
||||
void breakTime(time_t time, tmElements_t &tm){
|
||||
// break the given time_t into time components
|
||||
// this is a more compact version of the C library localtime function
|
||||
// note that year is offset from 1970 !!!
|
||||
|
||||
uint8_t period;
|
||||
time_t length;
|
||||
|
||||
tm.Second = time % 60;
|
||||
time /= 60; // now it is minutes
|
||||
tm.Minute = time % 60;
|
||||
time /= 60; // now it is hours
|
||||
tm.Hour = time % 24;
|
||||
time /= 24; // now it is days since 1 Jan 1970
|
||||
|
||||
// if the number of days since epoch matches cacheTime, then can take date
|
||||
// elements from cacheElements and avoid expensive calculation.
|
||||
if (time == (cacheTime / SECS_PER_DAY)) {
|
||||
if (&tm != &cacheElements) { // check whether tm is actually cacheElements
|
||||
tm.Wday = cacheElements.Wday;
|
||||
tm.Day = cacheElements.Day;
|
||||
tm.Month = cacheElements.Month;
|
||||
tm.Year = cacheElements.Year;
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
tm.Wday = DAYS_TO_WDAY(time);
|
||||
|
||||
period = 0;
|
||||
while (time >= (length = daysInYear(period)))
|
||||
{
|
||||
time -= length;
|
||||
period++;
|
||||
}
|
||||
tm.Year = period; // year is offset from 1970
|
||||
// time is now days since 1 Jan of the year
|
||||
|
||||
bool leap_year = LEAP_YEAR(period);
|
||||
period = 0;
|
||||
while (period < 12 && time >= (length = monthDays[period] + (leap_year && period==1)))
|
||||
{
|
||||
time -= length;
|
||||
period++;
|
||||
}
|
||||
tm.Month = period + 1; // jan is month 1
|
||||
// time is now days since the 1st day of the month
|
||||
|
||||
tm.Day = time + 1; // day of month
|
||||
}
|
||||
|
||||
time_t makeTime(const tmElements_t &tm){
|
||||
// assemble time elements into time_t
|
||||
// note year argument is offset from 1970 (see macros in time.h to convert to other formats)
|
||||
// previous version used full four digit year (or digits since 2000),i.e. 2009 was 2009 or 9
|
||||
|
||||
int i;
|
||||
uint32_t seconds;
|
||||
|
||||
// seconds from 1970 till 1 jan 00:00:00 of the given year
|
||||
seconds = SECS_PER_DAY * (365 * tm.Year);
|
||||
for (i = 0; i < tm.Year; i++) {
|
||||
if (LEAP_YEAR(i)) {
|
||||
seconds += SECS_PER_DAY; // add extra days for leap years
|
||||
}
|
||||
}
|
||||
|
||||
// add days for this year, months start from 1
|
||||
for (i = 1; i < tm.Month; i++) {
|
||||
if ( (i == 2) && LEAP_YEAR(tm.Year)) {
|
||||
seconds += SECS_PER_DAY * 29;
|
||||
} else {
|
||||
seconds += SECS_PER_DAY * monthDays[i-1]; //monthDay array starts from 0
|
||||
}
|
||||
}
|
||||
seconds+= (tm.Day-1) * SECS_PER_DAY;
|
||||
seconds+= tm.Hour * SECS_PER_HOUR;
|
||||
seconds+= tm.Minute * SECS_PER_MIN;
|
||||
seconds+= tm.Second;
|
||||
return (time_t)seconds;
|
||||
}
|
||||
/*=====================================================*/
|
||||
/* Low level system time functions */
|
||||
|
||||
static time_t sysTime = 0;
|
||||
static uint32_t prevMicros = 0;
|
||||
static time_t nextSyncTime = 0;
|
||||
static timeStatus_t Status = timeNotSet;
|
||||
|
||||
getExternalTime getTimePtr; // pointer to external sync function
|
||||
//setExternalTime setTimePtr; // not used in this version
|
||||
|
||||
#ifdef TIME_DRIFT_INFO // define this to get drift data
|
||||
time_t sysUnsyncedTime = 0; // the time sysTime unadjusted by sync
|
||||
#endif
|
||||
|
||||
#ifdef usePPS
|
||||
void SyncToPPS()
|
||||
{
|
||||
sysTime++;
|
||||
prevMicros = micros();
|
||||
//Serial.println(prevMicros);
|
||||
}
|
||||
#endif
|
||||
|
||||
time_t now() {
|
||||
uint32_t sysTimeMicros;
|
||||
return now(sysTimeMicros);
|
||||
}
|
||||
|
||||
time_t now(uint32_t& sysTimeMicros) {
|
||||
// calculate number of seconds passed since last call to now()
|
||||
while ((sysTimeMicros = micros() - prevMicros) >= 1000000) {
|
||||
// micros() and prevMicros are both unsigned ints thus the subtraction will
|
||||
// always result in a positive difference. This is OK since it corrects for
|
||||
// wrap-around and micros() is monotonic.
|
||||
sysTime++;
|
||||
prevMicros += 1000000;
|
||||
#ifdef TIME_DRIFT_INFO
|
||||
sysUnsyncedTime++; // this can be compared to the synced time to measure long term drift
|
||||
#endif
|
||||
}
|
||||
if (nextSyncTime <= sysTime) {
|
||||
if (getTimePtr != 0) {
|
||||
time_t t = getTimePtr();
|
||||
|
||||
if (t != 0) {
|
||||
setTime(t);
|
||||
} else {
|
||||
nextSyncTime = sysTime + syncInterval;
|
||||
Status = (Status == timeNotSet) ? timeNotSet : timeNeedsSync;
|
||||
}
|
||||
}
|
||||
}
|
||||
return sysTime;
|
||||
}
|
||||
|
||||
void setTime(time_t t) {
|
||||
#ifdef TIME_DRIFT_INFO
|
||||
if(sysUnsyncedTime == 0)
|
||||
sysUnsyncedTime = t; // store the time of the first call to set a valid Time
|
||||
#endif
|
||||
|
||||
sysTime = t;
|
||||
nextSyncTime = t + (time_t) syncInterval;
|
||||
Status = timeSet;
|
||||
#ifndef usePPS
|
||||
prevMicros = micros(); // restart counting from now (thanks to Korman for this fix)
|
||||
#endif
|
||||
}
|
||||
|
||||
void setTime(int hr, int min, int sec, int dy, int mnth, int yr) {
|
||||
// year can be given as full four digit year or two digts (2010 or 10 for 2010);
|
||||
// it is converted to years since 1970
|
||||
if (yr > 99)
|
||||
yr = CalendarYrToTm(yr);
|
||||
else
|
||||
yr = tmYearToY2k(yr);
|
||||
cacheElements.Year = yr;
|
||||
cacheElements.Month = mnth;
|
||||
cacheElements.Day = dy;
|
||||
cacheElements.Hour = hr;
|
||||
cacheElements.Minute = min;
|
||||
cacheElements.Second = sec;
|
||||
cacheTime = makeTime(cacheElements);
|
||||
cacheElements.Wday = DAYS_TO_WDAY(cacheTime / SECS_PER_DAY);
|
||||
setTime(cacheTime);
|
||||
}
|
||||
|
||||
void adjustTime(long adjustment) {
|
||||
sysTime += adjustment;
|
||||
}
|
||||
|
||||
// indicates if time has been set and recently synchronized
|
||||
timeStatus_t timeStatus() {
|
||||
now(); // required to actually update the status
|
||||
return Status;
|
||||
}
|
||||
|
||||
void setSyncProvider(getExternalTime getTimeFunction){
|
||||
getTimePtr = getTimeFunction;
|
||||
nextSyncTime = sysTime;
|
||||
now(); // this will sync the clock
|
||||
}
|
||||
|
||||
void setSyncInterval(time_t interval){ // set the number of seconds between re-sync
|
||||
syncInterval = (uint32_t)interval;
|
||||
nextSyncTime = sysTime + syncInterval;
|
||||
}
|
@ -27,11 +27,7 @@
|
||||
1.4 5 Sep 2014 - compatibility with Arduino 1.5.7
|
||||
*/
|
||||
|
||||
#if ARDUINO >= 100
|
||||
#include <Arduino.h>
|
||||
#else
|
||||
#include <WProgram.h>
|
||||
#endif
|
||||
|
||||
#define TIMELIB_ENABLE_MILLIS
|
||||
#define usePPS
|
||||
@ -43,7 +39,8 @@
|
||||
|
||||
static tmElements_t cacheElements; // a cache of time elements
|
||||
static time_t cacheTime; // the time the cache was updated
|
||||
static uint32_t syncInterval = 300; // time sync will be attempted after this many seconds
|
||||
static uint32_t syncInterval =
|
||||
300; // time sync will be attempted after this many seconds
|
||||
|
||||
void refreshCache(time_t t) {
|
||||
if (t != cacheTime) {
|
||||
@ -67,12 +64,12 @@ int hourFormat12() { // the hour now in 12 hour format
|
||||
|
||||
int hourFormat12(time_t t) { // the hour for the given time in 12 hour format
|
||||
refreshCache(t);
|
||||
if( cacheElements.Hour == 0 )
|
||||
if (cacheElements.Hour == 0)
|
||||
return 12; // 12 midnight
|
||||
else if( cacheElements.Hour > 12)
|
||||
return cacheElements.Hour - 12 ;
|
||||
else if (cacheElements.Hour > 12)
|
||||
return cacheElements.Hour - 12;
|
||||
else
|
||||
return cacheElements.Hour ;
|
||||
return cacheElements.Hour;
|
||||
}
|
||||
|
||||
uint8_t isAM() { // returns true if time now is AM
|
||||
@ -91,18 +88,14 @@ uint8_t isPM(time_t t) { // returns true if PM
|
||||
return (hour(t) >= 12);
|
||||
}
|
||||
|
||||
int minute() {
|
||||
return minute(now());
|
||||
}
|
||||
int minute() { return minute(now()); }
|
||||
|
||||
int minute(time_t t) { // the minute for the given time
|
||||
refreshCache(t);
|
||||
return cacheElements.Minute;
|
||||
}
|
||||
|
||||
int second() {
|
||||
return second(now());
|
||||
}
|
||||
int second() { return second(now()); }
|
||||
|
||||
int second(time_t t) { // the second for the given time
|
||||
refreshCache(t);
|
||||
@ -122,9 +115,7 @@ int microsecond() {
|
||||
return (int)us;
|
||||
}
|
||||
|
||||
int day(){
|
||||
return(day(now()));
|
||||
}
|
||||
int day() { return (day(now())); }
|
||||
|
||||
int day(time_t t) { // the day for the given time (0-6)
|
||||
refreshCache(t);
|
||||
@ -140,9 +131,7 @@ int weekday(time_t t) {
|
||||
return cacheElements.Wday;
|
||||
}
|
||||
|
||||
int month(){
|
||||
return month(now());
|
||||
}
|
||||
int month() { return month(now()); }
|
||||
|
||||
int month(time_t t) { // the month for the given time
|
||||
refreshCache(t);
|
||||
@ -160,18 +149,23 @@ int year(time_t t) { // the year for the given time
|
||||
|
||||
/*============================================================================*/
|
||||
/* functions to convert to and from system time */
|
||||
/* These are for interfacing with time serivces and are not normally needed in a sketch */
|
||||
/* These are for interfacing with time serivces and are not normally needed in a
|
||||
* sketch */
|
||||
|
||||
// leap year calulator expects year argument as years offset from 1970
|
||||
#define LEAP_YEAR(Y) ( ((1970+(Y))>0) && !((1970+(Y))%4) && ( ((1970+(Y))%100) || !((1970+(Y))%400) ) )
|
||||
#define daysInYear(year) ((time_t) (LEAP_YEAR(year) ? 366 : 365))
|
||||
#define LEAP_YEAR(Y) \
|
||||
(((1970 + (Y)) > 0) && !((1970 + (Y)) % 4) && \
|
||||
(((1970 + (Y)) % 100) || !((1970 + (Y)) % 400)))
|
||||
#define daysInYear(year) ((time_t)(LEAP_YEAR(year) ? 366 : 365))
|
||||
|
||||
static const uint8_t monthDays[]={31,28,31,30,31,30,31,31,30,31,30,31}; // API starts months from 1, this array starts from 0
|
||||
static const uint8_t monthDays[] = {
|
||||
31, 28, 31, 30, 31, 30, 31,
|
||||
31, 30, 31, 30, 31}; // API starts months from 1, this array starts from 0
|
||||
|
||||
void breakTime(time_t time, tmElements_t &tm){
|
||||
// break the given time_t into time components
|
||||
// this is a more compact version of the C library localtime function
|
||||
// note that year is offset from 1970 !!!
|
||||
void breakTime(time_t time, tmElements_t &tm) {
|
||||
// break the given time_t into time components
|
||||
// this is a more compact version of the C library localtime function
|
||||
// note that year is offset from 1970 !!!
|
||||
|
||||
uint8_t period;
|
||||
time_t length;
|
||||
@ -198,8 +192,7 @@ void breakTime(time_t time, tmElements_t &tm){
|
||||
tm.Wday = DAYS_TO_WDAY(time);
|
||||
|
||||
period = 0;
|
||||
while (time >= (length = daysInYear(period)))
|
||||
{
|
||||
while (time >= (length = daysInYear(period))) {
|
||||
time -= length;
|
||||
period++;
|
||||
}
|
||||
@ -208,8 +201,8 @@ void breakTime(time_t time, tmElements_t &tm){
|
||||
|
||||
bool leap_year = LEAP_YEAR(period);
|
||||
period = 0;
|
||||
while (period < 12 && time >= (length = monthDays[period] + (leap_year && period==1)))
|
||||
{
|
||||
while (period < 12 &&
|
||||
time >= (length = monthDays[period] + (leap_year && period == 1))) {
|
||||
time -= length;
|
||||
period++;
|
||||
}
|
||||
@ -219,10 +212,11 @@ void breakTime(time_t time, tmElements_t &tm){
|
||||
tm.Day = time + 1; // day of month
|
||||
}
|
||||
|
||||
time_t makeTime(const tmElements_t &tm){
|
||||
// assemble time elements into time_t
|
||||
// note year argument is offset from 1970 (see macros in time.h to convert to other formats)
|
||||
// previous version used full four digit year (or digits since 2000),i.e. 2009 was 2009 or 9
|
||||
time_t makeTime(const tmElements_t &tm) {
|
||||
// assemble time elements into time_t
|
||||
// note year argument is offset from 1970 (see macros in time.h to convert to
|
||||
// other formats) previous version used full four digit year (or digits since
|
||||
// 2000),i.e. 2009 was 2009 or 9
|
||||
|
||||
int i;
|
||||
uint32_t seconds;
|
||||
@ -237,16 +231,17 @@ time_t makeTime(const tmElements_t &tm){
|
||||
|
||||
// add days for this year, months start from 1
|
||||
for (i = 1; i < tm.Month; i++) {
|
||||
if ( (i == 2) && LEAP_YEAR(tm.Year)) {
|
||||
if ((i == 2) && LEAP_YEAR(tm.Year)) {
|
||||
seconds += SECS_PER_DAY * 29;
|
||||
} else {
|
||||
seconds += SECS_PER_DAY * monthDays[i-1]; //monthDay array starts from 0
|
||||
seconds += SECS_PER_DAY * monthDays[i - 1]; // monthDay array starts from
|
||||
// 0
|
||||
}
|
||||
}
|
||||
seconds+= (tm.Day-1) * SECS_PER_DAY;
|
||||
seconds+= tm.Hour * SECS_PER_HOUR;
|
||||
seconds+= tm.Minute * SECS_PER_MIN;
|
||||
seconds+= tm.Second;
|
||||
seconds += (tm.Day - 1) * SECS_PER_DAY;
|
||||
seconds += tm.Hour * SECS_PER_HOUR;
|
||||
seconds += tm.Minute * SECS_PER_MIN;
|
||||
seconds += tm.Second;
|
||||
return (time_t)seconds;
|
||||
}
|
||||
/*=====================================================*/
|
||||
@ -258,18 +253,17 @@ static time_t nextSyncTime = 0;
|
||||
static timeStatus_t Status = timeNotSet;
|
||||
|
||||
getExternalTime getTimePtr; // pointer to external sync function
|
||||
//setExternalTime setTimePtr; // not used in this version
|
||||
// setExternalTime setTimePtr; // not used in this version
|
||||
|
||||
#ifdef TIME_DRIFT_INFO // define this to get drift data
|
||||
time_t sysUnsyncedTime = 0; // the time sysTime unadjusted by sync
|
||||
#endif
|
||||
|
||||
#ifdef usePPS
|
||||
void SyncToPPS()
|
||||
{
|
||||
time_t SyncToPPS() {
|
||||
sysTime++;
|
||||
prevMicros = micros();
|
||||
//Serial.println(prevMicros);
|
||||
return sysTime;
|
||||
}
|
||||
#endif
|
||||
|
||||
@ -278,7 +272,7 @@ time_t now() {
|
||||
return now(sysTimeMicros);
|
||||
}
|
||||
|
||||
time_t now(uint32_t& sysTimeMicros) {
|
||||
time_t now(uint32_t &sysTimeMicros) {
|
||||
// calculate number of seconds passed since last call to now()
|
||||
while ((sysTimeMicros = micros() - prevMicros) >= 1000000) {
|
||||
// micros() and prevMicros are both unsigned ints thus the subtraction will
|
||||
@ -287,7 +281,8 @@ time_t now(uint32_t& sysTimeMicros) {
|
||||
sysTime++;
|
||||
prevMicros += 1000000;
|
||||
#ifdef TIME_DRIFT_INFO
|
||||
sysUnsyncedTime++; // this can be compared to the synced time to measure long term drift
|
||||
sysUnsyncedTime++; // this can be compared to the synced time to measure
|
||||
// long term drift
|
||||
#endif
|
||||
}
|
||||
if (nextSyncTime <= sysTime) {
|
||||
@ -307,21 +302,22 @@ time_t now(uint32_t& sysTimeMicros) {
|
||||
|
||||
void setTime(time_t t) {
|
||||
#ifdef TIME_DRIFT_INFO
|
||||
if(sysUnsyncedTime == 0)
|
||||
if (sysUnsyncedTime == 0)
|
||||
sysUnsyncedTime = t; // store the time of the first call to set a valid Time
|
||||
#endif
|
||||
|
||||
sysTime = t;
|
||||
nextSyncTime = t + (time_t) syncInterval;
|
||||
nextSyncTime = t + (time_t)syncInterval;
|
||||
Status = timeSet;
|
||||
#ifndef usePPS
|
||||
prevMicros = micros(); // restart counting from now (thanks to Korman for this fix)
|
||||
#endif
|
||||
#ifndef usePPS
|
||||
prevMicros =
|
||||
micros(); // restart counting from now (thanks to Korman for this fix)
|
||||
#endif
|
||||
}
|
||||
|
||||
void setTime(int hr, int min, int sec, int dy, int mnth, int yr) {
|
||||
// year can be given as full four digit year or two digts (2010 or 10 for 2010);
|
||||
// it is converted to years since 1970
|
||||
// year can be given as full four digit year or two digts (2010 or 10 for
|
||||
// 2010); it is converted to years since 1970
|
||||
if (yr > 99)
|
||||
yr = CalendarYrToTm(yr);
|
||||
else
|
||||
@ -337,9 +333,7 @@ void setTime(int hr, int min, int sec, int dy, int mnth, int yr) {
|
||||
setTime(cacheTime);
|
||||
}
|
||||
|
||||
void adjustTime(long adjustment) {
|
||||
sysTime += adjustment;
|
||||
}
|
||||
void adjustTime(long adjustment) { sysTime += adjustment; }
|
||||
|
||||
// indicates if time has been set and recently synchronized
|
||||
timeStatus_t timeStatus() {
|
||||
@ -347,13 +341,14 @@ timeStatus_t timeStatus() {
|
||||
return Status;
|
||||
}
|
||||
|
||||
void setSyncProvider(getExternalTime getTimeFunction){
|
||||
void setSyncProvider(getExternalTime getTimeFunction) {
|
||||
getTimePtr = getTimeFunction;
|
||||
nextSyncTime = sysTime;
|
||||
now(); // this will sync the clock
|
||||
}
|
||||
|
||||
void setSyncInterval(time_t interval){ // set the number of seconds between re-sync
|
||||
void setSyncInterval(
|
||||
time_t interval) { // set the number of seconds between re-sync
|
||||
syncInterval = (uint32_t)interval;
|
||||
nextSyncTime = sysTime + syncInterval;
|
||||
}
|
||||
|
@ -16,7 +16,6 @@
|
||||
#include <sys/types.h> // for __time_t_defined, but avr libc lacks sys/types.h
|
||||
#endif
|
||||
|
||||
|
||||
#if !defined(__time_t_defined) // avoid conflict with newlib or other posix libc
|
||||
typedef unsigned long time_t;
|
||||
#endif
|
||||
@ -33,15 +32,28 @@ typedef unsigned long time_t;
|
||||
// but at least this hack lets us define C++ functions as intended. Hopefully
|
||||
// nothing too terrible will result from overriding the C library header?!
|
||||
extern "C++" {
|
||||
typedef enum {timeNotSet, timeNeedsSync, timeSet
|
||||
} timeStatus_t ;
|
||||
typedef enum { timeNotSet, timeNeedsSync, timeSet } timeStatus_t;
|
||||
|
||||
typedef enum {
|
||||
dowInvalid, dowSunday, dowMonday, dowTuesday, dowWednesday, dowThursday, dowFriday, dowSaturday
|
||||
dowInvalid,
|
||||
dowSunday,
|
||||
dowMonday,
|
||||
dowTuesday,
|
||||
dowWednesday,
|
||||
dowThursday,
|
||||
dowFriday,
|
||||
dowSaturday
|
||||
} timeDayOfWeek_t;
|
||||
|
||||
typedef enum {
|
||||
tmSecond, tmMinute, tmHour, tmWday, tmDay,tmMonth, tmYear, tmNbrFields
|
||||
tmSecond,
|
||||
tmMinute,
|
||||
tmHour,
|
||||
tmWday,
|
||||
tmDay,
|
||||
tmMonth,
|
||||
tmYear,
|
||||
tmNbrFields
|
||||
} tmByteFields;
|
||||
|
||||
typedef struct {
|
||||
@ -54,15 +66,14 @@ typedef struct {
|
||||
uint8_t Year; // offset from 1970;
|
||||
} tmElements_t, TimeElements, *tmElementsPtr_t;
|
||||
|
||||
//convenience macros to convert to and from tm years
|
||||
// convenience macros to convert to and from tm years
|
||||
#define tmYearToCalendar(Y) ((Y) + 1970) // full four digit year
|
||||
#define CalendarYrToTm(Y) ((Y) - 1970)
|
||||
#define tmYearToY2k(Y) ((Y) - 30) // offset is from 2000
|
||||
#define CalendarYrToTm(Y) ((Y)-1970)
|
||||
#define tmYearToY2k(Y) ((Y)-30) // offset is from 2000
|
||||
#define y2kYearToTm(Y) ((Y) + 30)
|
||||
|
||||
typedef time_t(*getExternalTime)();
|
||||
//typedef void (*setExternalTime)(const time_t); // not used in this version
|
||||
|
||||
typedef time_t (*getExternalTime)();
|
||||
// typedef void (*setExternalTime)(const time_t); // not used in this version
|
||||
|
||||
/*==============================================================================*/
|
||||
/* Useful Constants */
|
||||
@ -71,30 +82,43 @@ typedef time_t(*getExternalTime)();
|
||||
#define SECS_PER_DAY ((time_t)(SECS_PER_HOUR * 24UL))
|
||||
#define DAYS_PER_WEEK ((time_t)(7UL))
|
||||
#define SECS_PER_WEEK ((time_t)(SECS_PER_DAY * DAYS_PER_WEEK))
|
||||
#define SECS_PER_YEAR ((time_t)(SECS_PER_DAY * 365UL)) // TODO: ought to handle leap years
|
||||
#define SECS_PER_YEAR \
|
||||
((time_t)(SECS_PER_DAY * 365UL)) // TODO: ought to handle leap years
|
||||
#define SECS_YR_2000 ((time_t)(946684800UL)) // the time at the start of y2k
|
||||
|
||||
/* Useful Macros for getting elapsed time */
|
||||
#define numberOfSeconds(_time_) ((_time_) % SECS_PER_MIN)
|
||||
#define numberOfMinutes(_time_) (((_time_) / SECS_PER_MIN) % SECS_PER_MIN)
|
||||
#define numberOfHours(_time_) (((_time_) % SECS_PER_DAY) / SECS_PER_HOUR)
|
||||
#define dayOfWeek(_time_) ((((_time_) / SECS_PER_DAY + 4) % DAYS_PER_WEEK)+1) // 1 = Sunday
|
||||
#define elapsedDays(_time_) ((_time_) / SECS_PER_DAY) // this is number of days since Jan 1 1970
|
||||
#define elapsedSecsToday(_time_) ((_time_) % SECS_PER_DAY) // the number of seconds since last midnight
|
||||
// The following macros are used in calculating alarms and assume the clock is set to a date later than Jan 1 1971
|
||||
// Always set the correct time before settting alarms
|
||||
#define previousMidnight(_time_) (((_time_) / SECS_PER_DAY) * SECS_PER_DAY) // time at the start of the given day
|
||||
#define nextMidnight(_time_) (previousMidnight(_time_) + SECS_PER_DAY) // time at the end of the given day
|
||||
#define elapsedSecsThisWeek(_time_) (elapsedSecsToday(_time_) + ((dayOfWeek(_time_)-1) * SECS_PER_DAY)) // note that week starts on day 1
|
||||
#define previousSunday(_time_) ((_time_) - elapsedSecsThisWeek(_time_)) // time at the start of the week for the given time
|
||||
#define nextSunday(_time_) (previousSunday(_time_)+SECS_PER_WEEK) // time at the end of the week for the given time
|
||||
|
||||
#define dayOfWeek(_time_) \
|
||||
((((_time_) / SECS_PER_DAY + 4) % DAYS_PER_WEEK) + 1) // 1 = Sunday
|
||||
#define elapsedDays(_time_) \
|
||||
((_time_) / SECS_PER_DAY) // this is number of days since Jan 1 1970
|
||||
#define elapsedSecsToday(_time_) \
|
||||
((_time_) % SECS_PER_DAY) // the number of seconds since last midnight
|
||||
// The following macros are used in calculating alarms and assume the clock is
|
||||
// set to a date later than Jan 1 1971 Always set the correct time before
|
||||
// settting alarms
|
||||
#define previousMidnight(_time_) \
|
||||
(((_time_) / SECS_PER_DAY) * \
|
||||
SECS_PER_DAY) // time at the start of the given day
|
||||
#define nextMidnight(_time_) \
|
||||
(previousMidnight(_time_) + SECS_PER_DAY) // time at the end of the given day
|
||||
#define elapsedSecsThisWeek(_time_) \
|
||||
(elapsedSecsToday(_time_) + \
|
||||
((dayOfWeek(_time_) - 1) * SECS_PER_DAY)) // note that week starts on day 1
|
||||
#define previousSunday(_time_) \
|
||||
((_time_)-elapsedSecsThisWeek( \
|
||||
_time_)) // time at the start of the week for the given time
|
||||
#define nextSunday(_time_) \
|
||||
(previousSunday(_time_) + \
|
||||
SECS_PER_WEEK) // time at the end of the week for the given time
|
||||
|
||||
/* Useful Macros for converting elapsed time to a time_t */
|
||||
#define minutesToTime_t ((M)) ( (M) * SECS_PER_MIN)
|
||||
#define hoursToTime_t ((H)) ( (H) * SECS_PER_HOUR)
|
||||
#define daysToTime_t ((D)) ( (D) * SECS_PER_DAY) // fixed on Jul 22 2011
|
||||
#define weeksToTime_t ((W)) ( (W) * SECS_PER_WEEK)
|
||||
#define minutesToTime_t ((M))((M)*SECS_PER_MIN)
|
||||
#define hoursToTime_t ((H))((H)*SECS_PER_HOUR)
|
||||
#define daysToTime_t ((D))((D)*SECS_PER_DAY) // fixed on Jul 22 2011
|
||||
#define weeksToTime_t ((W))((W)*SECS_PER_WEEK)
|
||||
|
||||
/*============================================================================*/
|
||||
/* time and date functions */
|
||||
@ -125,28 +149,32 @@ int year(time_t t); // the year for the given time
|
||||
|
||||
time_t now(); // return the current time as seconds since Jan 1 1970
|
||||
#ifdef TIMELIB_ENABLE_MILLIS
|
||||
time_t now(uint32_t& sysTimeMicros); // return the current time as seconds and microseconds since Jan 1 1970
|
||||
time_t now(uint32_t &sysTimeMicros); // return the current time as seconds and
|
||||
// microseconds since Jan 1 1970
|
||||
|
||||
#endif
|
||||
#ifdef usePPS
|
||||
void SyncToPPS();
|
||||
time_t SyncToPPS();
|
||||
#endif
|
||||
void setTime(time_t t);
|
||||
void setTime(int hr,int min,int sec,int day, int month, int yr);
|
||||
void setTime(int hr, int min, int sec, int day, int month, int yr);
|
||||
void adjustTime(long adjustment);
|
||||
|
||||
|
||||
/* date strings */
|
||||
#define dt_MAX_STRING_LEN 9 // length of longest date string (excluding terminating null)
|
||||
char* monthStr(uint8_t month);
|
||||
char* dayStr(uint8_t day);
|
||||
char* monthShortStr(uint8_t month);
|
||||
char* dayShortStr(uint8_t day);
|
||||
#define dt_MAX_STRING_LEN \
|
||||
9 // length of longest date string (excluding terminating null)
|
||||
char *monthStr(uint8_t month);
|
||||
char *dayStr(uint8_t day);
|
||||
char *monthShortStr(uint8_t month);
|
||||
char *dayShortStr(uint8_t day);
|
||||
|
||||
/* time sync functions */
|
||||
timeStatus_t timeStatus(); // indicates if time has been set and recently synchronized
|
||||
void setSyncProvider( getExternalTime getTimeFunction); // identify the external time provider
|
||||
void setSyncInterval(time_t interval); // set the number of seconds between re-sync
|
||||
timeStatus_t
|
||||
timeStatus(); // indicates if time has been set and recently synchronized
|
||||
void setSyncProvider(
|
||||
getExternalTime getTimeFunction); // identify the external time provider
|
||||
void setSyncInterval(
|
||||
time_t interval); // set the number of seconds between re-sync
|
||||
|
||||
/* low level functions to convert to and from system time */
|
||||
void breakTime(time_t time, tmElements_t &tm); // break time_t into elements
|
||||
@ -155,4 +183,3 @@ time_t makeTime(const tmElements_t &tm); // convert time elements into time_t
|
||||
} // extern "C++"
|
||||
#endif // __cplusplus
|
||||
#endif /* _Time_h */
|
||||
|
||||
|
@ -131,7 +131,7 @@ void refreshtheDisplay() {
|
||||
|
||||
uint8_t msgWaiting;
|
||||
char timeState, buff[16];
|
||||
time_t t = myTZ.toLocal(now()); // note: call now() here *before* locking mutex!
|
||||
const time_t t = myTZ.toLocal(now()); // note: call now() here *before* locking mutex!
|
||||
|
||||
// block i2c bus access
|
||||
if (I2C_MUTEX_LOCK()) {
|
||||
|
@ -358,10 +358,13 @@ void setup() {
|
||||
#endif
|
||||
#endif
|
||||
|
||||
// start pps timepulse and timekeepr
|
||||
// start pps timepulse
|
||||
ESP_LOGI(TAG, "Starting Timekeeper...");
|
||||
assert(timepulse_init()); // setup timepulse
|
||||
timepulse_start();
|
||||
// set time source and sync time
|
||||
setSyncInterval(TIME_SYNC_INTERVAL * 60);
|
||||
setSyncProvider(&timeProvider);
|
||||
|
||||
// start wifi in monitor mode and start channel rotation timer
|
||||
ESP_LOGI(TAG, "Starting Wifi...");
|
||||
@ -414,10 +417,6 @@ void setup() {
|
||||
#endif
|
||||
#endif // HAS_BUTTON
|
||||
|
||||
// set time source
|
||||
setSyncInterval(TIME_SYNC_INTERVAL * 60);
|
||||
setSyncProvider(&timeProvider);
|
||||
|
||||
#if defined HAS_IF482 || defined HAS_DCF77
|
||||
ESP_LOGI(TAG, "Starting Clock Controller...");
|
||||
clock_init();
|
||||
|
@ -15,10 +15,8 @@ time_t timeProvider(void) {
|
||||
time_t t = 0;
|
||||
|
||||
#ifdef HAS_GPS
|
||||
// xSemaphoreTake(TimePulse, pdMS_TO_TICKS(1100)); // wait for pps
|
||||
t = get_gpstime(); // fetch recent time from last NEMA record
|
||||
if (t) {
|
||||
// t++; // last NMEA record concerns past second, so we add one
|
||||
#ifdef HAS_RTC
|
||||
set_rtctime(t); // calibrate RTC
|
||||
#endif
|
||||
@ -102,10 +100,10 @@ void timepulse_start(void) {
|
||||
// interrupt service routine triggered by either pps or esp32 hardware timer
|
||||
void IRAM_ATTR CLOCKIRQ(void) {
|
||||
|
||||
SyncToPPS(); // calibrate systime from Time.h
|
||||
time_t t = SyncToPPS(); // calibrates UTC systime, see Time.h
|
||||
|
||||
if (ClockTask != NULL)
|
||||
xTaskNotifyFromISR(ClockTask, uint32_t(now()), eSetBits, NULL);
|
||||
xTaskNotifyFromISR(ClockTask, uint32_t(t), eSetBits, NULL);
|
||||
|
||||
#if defined GPS_INT || defined RTC_INT
|
||||
xSemaphoreGiveFromISR(TimePulse, NULL);
|
||||
@ -167,10 +165,12 @@ void clock_init(void) {
|
||||
pinMode(HAS_DCF77, OUTPUT);
|
||||
#endif
|
||||
|
||||
userUTCTime = now();
|
||||
|
||||
xTaskCreatePinnedToCore(clock_loop, // task function
|
||||
"clockloop", // name of task
|
||||
2048, // stack size of task
|
||||
(void *)1, // task parameter
|
||||
(void *)&userUTCTime, // start time as task parameter
|
||||
4, // priority of the task
|
||||
&ClockTask, // task handle
|
||||
1); // CPU core
|
||||
@ -178,50 +178,48 @@ void clock_init(void) {
|
||||
assert(ClockTask); // has clock task started?
|
||||
} // clock_init
|
||||
|
||||
void clock_loop(void *pvParameters) { // ClockTask
|
||||
void clock_loop(void *taskparameter) { // ClockTask
|
||||
|
||||
configASSERT(((uint32_t)pvParameters) == 1); // FreeRTOS check
|
||||
// caveat: don't use now() in this task, it will cause a race condition
|
||||
// due to concurrent access to i2c bus for setting rtc via SyncProvider!
|
||||
|
||||
#define nextsec(t) (t + 1) // next second
|
||||
#define nextmin(t) (t + SECS_PER_MIN + 1) // next minute
|
||||
|
||||
TickType_t wakeTime;
|
||||
uint32_t printtime;
|
||||
time_t t;
|
||||
|
||||
#define t1(t) (t + DCF77_FRAME_SIZE + 1) // future minute for next DCF77 frame
|
||||
#define t2(t) (t + 1) // future second after sync with 1pps trigger
|
||||
time_t t = *((time_t *)taskparameter); // UTC time seconds
|
||||
|
||||
// preload first DCF frame before start
|
||||
#ifdef HAS_DCF77
|
||||
uint8_t *DCFpulse; // pointer on array with DCF pulse bits
|
||||
DCFpulse = DCF77_Frame(t1(now()));
|
||||
DCFpulse = DCF77_Frame(nextmin(t));
|
||||
#endif
|
||||
|
||||
// output time telegram for second following sec beginning with timepulse
|
||||
// output the next second's pulse after timepulse arrived
|
||||
for (;;) {
|
||||
xTaskNotifyWait(0x00, ULONG_MAX, &printtime,
|
||||
portMAX_DELAY); // wait for timepulse
|
||||
|
||||
// no confident time -> suppress clock output
|
||||
// no confident time -> we suppress clock output
|
||||
if (timeStatus() == timeNotSet)
|
||||
continue;
|
||||
|
||||
t = time_t(printtime);
|
||||
t = time_t(printtime); // UTC time seconds
|
||||
|
||||
#if defined HAS_IF482
|
||||
|
||||
// IF482_Pulse(t2(t)); // next second
|
||||
IF482_Pulse(t); // next second
|
||||
IF482_Pulse(nextsec(t));
|
||||
|
||||
#elif defined HAS_DCF77
|
||||
|
||||
if (second(t) == DCF77_FRAME_SIZE - 1) // is it time to load new frame?
|
||||
DCFpulse = DCF77_Frame(t1(t)); // generate next frame
|
||||
DCFpulse = DCF77_Frame(nextmin(t)); // generate frame for next minute
|
||||
|
||||
if (DCFpulse[DCF77_FRAME_SIZE] !=
|
||||
minute(t1(t))) // have recent frame? (timepulses could be missed!)
|
||||
continue;
|
||||
if (minute(nextmin(t)) == // do we still have a recent frame?
|
||||
DCFpulse[DCF77_FRAME_SIZE]) // (timepulses could be missed!)
|
||||
DCF77_Pulse(t, DCFpulse); // then output current second's pulse
|
||||
else
|
||||
// DCF77_Pulse(t2(t), DCFpulse); // then output next second of this frame
|
||||
DCF77_Pulse(t, DCFpulse); // then output next second of this frame
|
||||
continue; // no recent frame -> we suppress clock output
|
||||
|
||||
#endif
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user