timekeeper fixes

This commit is contained in:
cyberman54 2019-03-02 20:01:27 +01:00
parent f944725cff
commit 182f850d23
6 changed files with 247 additions and 587 deletions

View File

@ -1,359 +0,0 @@
/*
time.c - low level time and date functions
Copyright (c) Michael Margolis 2009-2014
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1.0 6 Jan 2010 - initial release
1.1 12 Feb 2010 - fixed leap year calculation error
1.2 1 Nov 2010 - fixed setTime bug (thanks to Korman for this)
1.3 24 Mar 2012 - many edits by Paul Stoffregen: fixed timeStatus() to update
status, updated examples for Arduino 1.0, fixed ARM
compatibility issues, added TimeArduinoDue and TimeTeensy3
examples, add error checking and messages to RTC examples,
add examples to DS1307RTC library.
1.4 5 Sep 2014 - compatibility with Arduino 1.5.7
*/
#if ARDUINO >= 100
#include <Arduino.h>
#else
#include <WProgram.h>
#endif
#define TIMELIB_ENABLE_MILLIS
#define usePPS
#include "microTimeLib.h"
// Convert days since epoch to week day. Sunday is day 1.
#define DAYS_TO_WDAY(x) (((x) + 4) % 7) + 1
static tmElements_t cacheElements; // a cache of time elements
static time_t cacheTime; // the time the cache was updated
static uint32_t syncInterval = 300; // time sync will be attempted after this many seconds
void refreshCache(time_t t) {
if (t != cacheTime) {
breakTime(t, cacheElements);
cacheTime = t;
}
}
int hour() { // the hour now
return hour(now());
}
int hour(time_t t) { // the hour for the given time
refreshCache(t);
return cacheElements.Hour;
}
int hourFormat12() { // the hour now in 12 hour format
return hourFormat12(now());
}
int hourFormat12(time_t t) { // the hour for the given time in 12 hour format
refreshCache(t);
if( cacheElements.Hour == 0 )
return 12; // 12 midnight
else if( cacheElements.Hour > 12)
return cacheElements.Hour - 12 ;
else
return cacheElements.Hour ;
}
uint8_t isAM() { // returns true if time now is AM
return !isPM(now());
}
uint8_t isAM(time_t t) { // returns true if given time is AM
return !isPM(t);
}
uint8_t isPM() { // returns true if PM
return isPM(now());
}
uint8_t isPM(time_t t) { // returns true if PM
return (hour(t) >= 12);
}
int minute() {
return minute(now());
}
int minute(time_t t) { // the minute for the given time
refreshCache(t);
return cacheElements.Minute;
}
int second() {
return second(now());
}
int second(time_t t) { // the second for the given time
refreshCache(t);
return cacheElements.Second;
}
int millisecond() {
uint32_t ms;
now(ms);
ms = ms / 1000;
return (int)ms;
}
int microsecond() {
uint32_t us;
now(us);
return (int)us;
}
int day(){
return(day(now()));
}
int day(time_t t) { // the day for the given time (0-6)
refreshCache(t);
return cacheElements.Day;
}
int weekday() { // Sunday is day 1
return weekday(now());
}
int weekday(time_t t) {
refreshCache(t);
return cacheElements.Wday;
}
int month(){
return month(now());
}
int month(time_t t) { // the month for the given time
refreshCache(t);
return cacheElements.Month;
}
int year() { // as in Processing, the full four digit year: (2009, 2010 etc)
return year(now());
}
int year(time_t t) { // the year for the given time
refreshCache(t);
return tmYearToCalendar(cacheElements.Year);
}
/*============================================================================*/
/* functions to convert to and from system time */
/* These are for interfacing with time serivces and are not normally needed in a sketch */
// leap year calulator expects year argument as years offset from 1970
#define LEAP_YEAR(Y) ( ((1970+(Y))>0) && !((1970+(Y))%4) && ( ((1970+(Y))%100) || !((1970+(Y))%400) ) )
#define daysInYear(year) ((time_t) (LEAP_YEAR(year) ? 366 : 365))
static const uint8_t monthDays[]={31,28,31,30,31,30,31,31,30,31,30,31}; // API starts months from 1, this array starts from 0
void breakTime(time_t time, tmElements_t &tm){
// break the given time_t into time components
// this is a more compact version of the C library localtime function
// note that year is offset from 1970 !!!
uint8_t period;
time_t length;
tm.Second = time % 60;
time /= 60; // now it is minutes
tm.Minute = time % 60;
time /= 60; // now it is hours
tm.Hour = time % 24;
time /= 24; // now it is days since 1 Jan 1970
// if the number of days since epoch matches cacheTime, then can take date
// elements from cacheElements and avoid expensive calculation.
if (time == (cacheTime / SECS_PER_DAY)) {
if (&tm != &cacheElements) { // check whether tm is actually cacheElements
tm.Wday = cacheElements.Wday;
tm.Day = cacheElements.Day;
tm.Month = cacheElements.Month;
tm.Year = cacheElements.Year;
}
return;
}
tm.Wday = DAYS_TO_WDAY(time);
period = 0;
while (time >= (length = daysInYear(period)))
{
time -= length;
period++;
}
tm.Year = period; // year is offset from 1970
// time is now days since 1 Jan of the year
bool leap_year = LEAP_YEAR(period);
period = 0;
while (period < 12 && time >= (length = monthDays[period] + (leap_year && period==1)))
{
time -= length;
period++;
}
tm.Month = period + 1; // jan is month 1
// time is now days since the 1st day of the month
tm.Day = time + 1; // day of month
}
time_t makeTime(const tmElements_t &tm){
// assemble time elements into time_t
// note year argument is offset from 1970 (see macros in time.h to convert to other formats)
// previous version used full four digit year (or digits since 2000),i.e. 2009 was 2009 or 9
int i;
uint32_t seconds;
// seconds from 1970 till 1 jan 00:00:00 of the given year
seconds = SECS_PER_DAY * (365 * tm.Year);
for (i = 0; i < tm.Year; i++) {
if (LEAP_YEAR(i)) {
seconds += SECS_PER_DAY; // add extra days for leap years
}
}
// add days for this year, months start from 1
for (i = 1; i < tm.Month; i++) {
if ( (i == 2) && LEAP_YEAR(tm.Year)) {
seconds += SECS_PER_DAY * 29;
} else {
seconds += SECS_PER_DAY * monthDays[i-1]; //monthDay array starts from 0
}
}
seconds+= (tm.Day-1) * SECS_PER_DAY;
seconds+= tm.Hour * SECS_PER_HOUR;
seconds+= tm.Minute * SECS_PER_MIN;
seconds+= tm.Second;
return (time_t)seconds;
}
/*=====================================================*/
/* Low level system time functions */
static time_t sysTime = 0;
static uint32_t prevMicros = 0;
static time_t nextSyncTime = 0;
static timeStatus_t Status = timeNotSet;
getExternalTime getTimePtr; // pointer to external sync function
//setExternalTime setTimePtr; // not used in this version
#ifdef TIME_DRIFT_INFO // define this to get drift data
time_t sysUnsyncedTime = 0; // the time sysTime unadjusted by sync
#endif
#ifdef usePPS
void SyncToPPS()
{
sysTime++;
prevMicros = micros();
//Serial.println(prevMicros);
}
#endif
time_t now() {
uint32_t sysTimeMicros;
return now(sysTimeMicros);
}
time_t now(uint32_t& sysTimeMicros) {
// calculate number of seconds passed since last call to now()
while ((sysTimeMicros = micros() - prevMicros) >= 1000000) {
// micros() and prevMicros are both unsigned ints thus the subtraction will
// always result in a positive difference. This is OK since it corrects for
// wrap-around and micros() is monotonic.
sysTime++;
prevMicros += 1000000;
#ifdef TIME_DRIFT_INFO
sysUnsyncedTime++; // this can be compared to the synced time to measure long term drift
#endif
}
if (nextSyncTime <= sysTime) {
if (getTimePtr != 0) {
time_t t = getTimePtr();
if (t != 0) {
setTime(t);
} else {
nextSyncTime = sysTime + syncInterval;
Status = (Status == timeNotSet) ? timeNotSet : timeNeedsSync;
}
}
}
return sysTime;
}
void setTime(time_t t) {
#ifdef TIME_DRIFT_INFO
if(sysUnsyncedTime == 0)
sysUnsyncedTime = t; // store the time of the first call to set a valid Time
#endif
sysTime = t;
nextSyncTime = t + (time_t) syncInterval;
Status = timeSet;
#ifndef usePPS
prevMicros = micros(); // restart counting from now (thanks to Korman for this fix)
#endif
}
void setTime(int hr, int min, int sec, int dy, int mnth, int yr) {
// year can be given as full four digit year or two digts (2010 or 10 for 2010);
// it is converted to years since 1970
if (yr > 99)
yr = CalendarYrToTm(yr);
else
yr = tmYearToY2k(yr);
cacheElements.Year = yr;
cacheElements.Month = mnth;
cacheElements.Day = dy;
cacheElements.Hour = hr;
cacheElements.Minute = min;
cacheElements.Second = sec;
cacheTime = makeTime(cacheElements);
cacheElements.Wday = DAYS_TO_WDAY(cacheTime / SECS_PER_DAY);
setTime(cacheTime);
}
void adjustTime(long adjustment) {
sysTime += adjustment;
}
// indicates if time has been set and recently synchronized
timeStatus_t timeStatus() {
now(); // required to actually update the status
return Status;
}
void setSyncProvider(getExternalTime getTimeFunction){
getTimePtr = getTimeFunction;
nextSyncTime = sysTime;
now(); // this will sync the clock
}
void setSyncInterval(time_t interval){ // set the number of seconds between re-sync
syncInterval = (uint32_t)interval;
nextSyncTime = sysTime + syncInterval;
}

View File

@ -27,11 +27,7 @@
1.4 5 Sep 2014 - compatibility with Arduino 1.5.7
*/
#if ARDUINO >= 100
#include <Arduino.h>
#else
#include <WProgram.h>
#endif
#include <Arduino.h>
#define TIMELIB_ENABLE_MILLIS
#define usePPS
@ -41,9 +37,10 @@
// Convert days since epoch to week day. Sunday is day 1.
#define DAYS_TO_WDAY(x) (((x) + 4) % 7) + 1
static tmElements_t cacheElements; // a cache of time elements
static time_t cacheTime; // the time the cache was updated
static uint32_t syncInterval = 300; // time sync will be attempted after this many seconds
static tmElements_t cacheElements; // a cache of time elements
static time_t cacheTime; // the time the cache was updated
static uint32_t syncInterval =
300; // time sync will be attempted after this many seconds
void refreshCache(time_t t) {
if (t != cacheTime) {
@ -52,8 +49,8 @@ void refreshCache(time_t t) {
}
}
int hour() { // the hour now
return hour(now());
int hour() { // the hour now
return hour(now());
}
int hour(time_t t) { // the hour for the given time
@ -62,49 +59,45 @@ int hour(time_t t) { // the hour for the given time
}
int hourFormat12() { // the hour now in 12 hour format
return hourFormat12(now());
return hourFormat12(now());
}
int hourFormat12(time_t t) { // the hour for the given time in 12 hour format
refreshCache(t);
if( cacheElements.Hour == 0 )
if (cacheElements.Hour == 0)
return 12; // 12 midnight
else if( cacheElements.Hour > 12)
return cacheElements.Hour - 12 ;
else if (cacheElements.Hour > 12)
return cacheElements.Hour - 12;
else
return cacheElements.Hour ;
return cacheElements.Hour;
}
uint8_t isAM() { // returns true if time now is AM
return !isPM(now());
return !isPM(now());
}
uint8_t isAM(time_t t) { // returns true if given time is AM
return !isPM(t);
return !isPM(t);
}
uint8_t isPM() { // returns true if PM
return isPM(now());
return isPM(now());
}
uint8_t isPM(time_t t) { // returns true if PM
return (hour(t) >= 12);
return (hour(t) >= 12);
}
int minute() {
return minute(now());
}
int minute() { return minute(now()); }
int minute(time_t t) { // the minute for the given time
refreshCache(t);
return cacheElements.Minute;
}
int second() {
return second(now());
}
int second() { return second(now()); }
int second(time_t t) { // the second for the given time
int second(time_t t) { // the second for the given time
refreshCache(t);
return cacheElements.Second;
}
@ -122,35 +115,31 @@ int microsecond() {
return (int)us;
}
int day(){
return(day(now()));
}
int day() { return (day(now())); }
int day(time_t t) { // the day for the given time (0-6)
refreshCache(t);
return cacheElements.Day;
}
int weekday() { // Sunday is day 1
return weekday(now());
int weekday() { // Sunday is day 1
return weekday(now());
}
int weekday(time_t t) {
refreshCache(t);
return cacheElements.Wday;
}
int month(){
return month(now());
}
int month(time_t t) { // the month for the given time
int month() { return month(now()); }
int month(time_t t) { // the month for the given time
refreshCache(t);
return cacheElements.Month;
}
int year() { // as in Processing, the full four digit year: (2009, 2010 etc)
return year(now());
int year() { // as in Processing, the full four digit year: (2009, 2010 etc)
return year(now());
}
int year(time_t t) { // the year for the given time
@ -158,20 +147,25 @@ int year(time_t t) { // the year for the given time
return tmYearToCalendar(cacheElements.Year);
}
/*============================================================================*/
/*============================================================================*/
/* functions to convert to and from system time */
/* These are for interfacing with time serivces and are not normally needed in a sketch */
/* These are for interfacing with time serivces and are not normally needed in a
* sketch */
// leap year calulator expects year argument as years offset from 1970
#define LEAP_YEAR(Y) ( ((1970+(Y))>0) && !((1970+(Y))%4) && ( ((1970+(Y))%100) || !((1970+(Y))%400) ) )
#define daysInYear(year) ((time_t) (LEAP_YEAR(year) ? 366 : 365))
#define LEAP_YEAR(Y) \
(((1970 + (Y)) > 0) && !((1970 + (Y)) % 4) && \
(((1970 + (Y)) % 100) || !((1970 + (Y)) % 400)))
#define daysInYear(year) ((time_t)(LEAP_YEAR(year) ? 366 : 365))
static const uint8_t monthDays[]={31,28,31,30,31,30,31,31,30,31,30,31}; // API starts months from 1, this array starts from 0
static const uint8_t monthDays[] = {
31, 28, 31, 30, 31, 30, 31,
31, 30, 31, 30, 31}; // API starts months from 1, this array starts from 0
void breakTime(time_t time, tmElements_t &tm){
// break the given time_t into time components
// this is a more compact version of the C library localtime function
// note that year is offset from 1970 !!!
void breakTime(time_t time, tmElements_t &tm) {
// break the given time_t into time components
// this is a more compact version of the C library localtime function
// note that year is offset from 1970 !!!
uint8_t period;
time_t length;
@ -186,7 +180,7 @@ void breakTime(time_t time, tmElements_t &tm){
// if the number of days since epoch matches cacheTime, then can take date
// elements from cacheElements and avoid expensive calculation.
if (time == (cacheTime / SECS_PER_DAY)) {
if (&tm != &cacheElements) { // check whether tm is actually cacheElements
if (&tm != &cacheElements) { // check whether tm is actually cacheElements
tm.Wday = cacheElements.Wday;
tm.Day = cacheElements.Day;
tm.Month = cacheElements.Month;
@ -196,34 +190,34 @@ void breakTime(time_t time, tmElements_t &tm){
}
tm.Wday = DAYS_TO_WDAY(time);
period = 0;
while (time >= (length = daysInYear(period)))
{
while (time >= (length = daysInYear(period))) {
time -= length;
period++;
}
tm.Year = period; // year is offset from 1970
tm.Year = period; // year is offset from 1970
// time is now days since 1 Jan of the year
bool leap_year = LEAP_YEAR(period);
period = 0;
while (period < 12 && time >= (length = monthDays[period] + (leap_year && period==1)))
{
while (period < 12 &&
time >= (length = monthDays[period] + (leap_year && period == 1))) {
time -= length;
period++;
}
tm.Month = period + 1; // jan is month 1
tm.Month = period + 1; // jan is month 1
// time is now days since the 1st day of the month
tm.Day = time + 1; // day of month
tm.Day = time + 1; // day of month
}
time_t makeTime(const tmElements_t &tm){
// assemble time elements into time_t
// note year argument is offset from 1970 (see macros in time.h to convert to other formats)
// previous version used full four digit year (or digits since 2000),i.e. 2009 was 2009 or 9
time_t makeTime(const tmElements_t &tm) {
// assemble time elements into time_t
// note year argument is offset from 1970 (see macros in time.h to convert to
// other formats) previous version used full four digit year (or digits since
// 2000),i.e. 2009 was 2009 or 9
int i;
uint32_t seconds;
@ -231,25 +225,26 @@ time_t makeTime(const tmElements_t &tm){
seconds = SECS_PER_DAY * (365 * tm.Year);
for (i = 0; i < tm.Year; i++) {
if (LEAP_YEAR(i)) {
seconds += SECS_PER_DAY; // add extra days for leap years
seconds += SECS_PER_DAY; // add extra days for leap years
}
}
// add days for this year, months start from 1
for (i = 1; i < tm.Month; i++) {
if ( (i == 2) && LEAP_YEAR(tm.Year)) {
if ((i == 2) && LEAP_YEAR(tm.Year)) {
seconds += SECS_PER_DAY * 29;
} else {
seconds += SECS_PER_DAY * monthDays[i-1]; //monthDay array starts from 0
seconds += SECS_PER_DAY * monthDays[i - 1]; // monthDay array starts from
// 0
}
}
seconds+= (tm.Day-1) * SECS_PER_DAY;
seconds+= tm.Hour * SECS_PER_HOUR;
seconds+= tm.Minute * SECS_PER_MIN;
seconds+= tm.Second;
return (time_t)seconds;
seconds += (tm.Day - 1) * SECS_PER_DAY;
seconds += tm.Hour * SECS_PER_HOUR;
seconds += tm.Minute * SECS_PER_MIN;
seconds += tm.Second;
return (time_t)seconds;
}
/*=====================================================*/
/*=====================================================*/
/* Low level system time functions */
static time_t sysTime = 0;
@ -257,19 +252,18 @@ static uint32_t prevMicros = 0;
static time_t nextSyncTime = 0;
static timeStatus_t Status = timeNotSet;
getExternalTime getTimePtr; // pointer to external sync function
//setExternalTime setTimePtr; // not used in this version
getExternalTime getTimePtr; // pointer to external sync function
// setExternalTime setTimePtr; // not used in this version
#ifdef TIME_DRIFT_INFO // define this to get drift data
time_t sysUnsyncedTime = 0; // the time sysTime unadjusted by sync
#ifdef TIME_DRIFT_INFO // define this to get drift data
time_t sysUnsyncedTime = 0; // the time sysTime unadjusted by sync
#endif
#ifdef usePPS
void SyncToPPS()
{
time_t SyncToPPS() {
sysTime++;
prevMicros = micros();
//Serial.println(prevMicros);
return sysTime;
}
#endif
@ -278,54 +272,56 @@ time_t now() {
return now(sysTimeMicros);
}
time_t now(uint32_t& sysTimeMicros) {
time_t now(uint32_t &sysTimeMicros) {
// calculate number of seconds passed since last call to now()
while ((sysTimeMicros = micros() - prevMicros) >= 1000000) {
while ((sysTimeMicros = micros() - prevMicros) >= 1000000) {
// micros() and prevMicros are both unsigned ints thus the subtraction will
// always result in a positive difference. This is OK since it corrects for
// wrap-around and micros() is monotonic.
sysTime++;
prevMicros += 1000000;
prevMicros += 1000000;
#ifdef TIME_DRIFT_INFO
sysUnsyncedTime++; // this can be compared to the synced time to measure long term drift
sysUnsyncedTime++; // this can be compared to the synced time to measure
// long term drift
#endif
}
if (nextSyncTime <= sysTime) {
if (getTimePtr != 0) {
time_t t = getTimePtr();
if (t != 0) {
setTime(t);
} else {
nextSyncTime = sysTime + syncInterval;
Status = (Status == timeNotSet) ? timeNotSet : timeNeedsSync;
Status = (Status == timeNotSet) ? timeNotSet : timeNeedsSync;
}
}
}
}
return sysTime;
}
void setTime(time_t t) {
void setTime(time_t t) {
#ifdef TIME_DRIFT_INFO
if(sysUnsyncedTime == 0)
sysUnsyncedTime = t; // store the time of the first call to set a valid Time
if (sysUnsyncedTime == 0)
sysUnsyncedTime = t; // store the time of the first call to set a valid Time
#endif
sysTime = t;
nextSyncTime = t + (time_t) syncInterval;
sysTime = t;
nextSyncTime = t + (time_t)syncInterval;
Status = timeSet;
#ifndef usePPS
prevMicros = micros(); // restart counting from now (thanks to Korman for this fix)
#endif
}
#ifndef usePPS
prevMicros =
micros(); // restart counting from now (thanks to Korman for this fix)
#endif
}
void setTime(int hr, int min, int sec, int dy, int mnth, int yr) {
// year can be given as full four digit year or two digts (2010 or 10 for 2010);
// it is converted to years since 1970
// year can be given as full four digit year or two digts (2010 or 10 for
// 2010); it is converted to years since 1970
if (yr > 99)
yr = CalendarYrToTm(yr);
yr = CalendarYrToTm(yr);
else
yr = tmYearToY2k(yr);
yr = tmYearToY2k(yr);
cacheElements.Year = yr;
cacheElements.Month = mnth;
cacheElements.Day = dy;
@ -337,9 +333,7 @@ void setTime(int hr, int min, int sec, int dy, int mnth, int yr) {
setTime(cacheTime);
}
void adjustTime(long adjustment) {
sysTime += adjustment;
}
void adjustTime(long adjustment) { sysTime += adjustment; }
// indicates if time has been set and recently synchronized
timeStatus_t timeStatus() {
@ -347,13 +341,14 @@ timeStatus_t timeStatus() {
return Status;
}
void setSyncProvider(getExternalTime getTimeFunction){
getTimePtr = getTimeFunction;
void setSyncProvider(getExternalTime getTimeFunction) {
getTimePtr = getTimeFunction;
nextSyncTime = sysTime;
now(); // this will sync the clock
}
void setSyncInterval(time_t interval){ // set the number of seconds between re-sync
void setSyncInterval(
time_t interval) { // set the number of seconds between re-sync
syncInterval = (uint32_t)interval;
nextSyncTime = sysTime + syncInterval;
}

View File

@ -5,7 +5,7 @@
/*
July 3 2011 - fixed elapsedSecsThisWeek macro (thanks Vincent Valdy for this)
- fixed daysToTime_t macro (thanks maniacbug)
*/
*/
#ifndef _Time_h
#ifdef __cplusplus
@ -16,7 +16,6 @@
#include <sys/types.h> // for __time_t_defined, but avr libc lacks sys/types.h
#endif
#if !defined(__time_t_defined) // avoid conflict with newlib or other posix libc
typedef unsigned long time_t;
#endif
@ -33,126 +32,154 @@ typedef unsigned long time_t;
// but at least this hack lets us define C++ functions as intended. Hopefully
// nothing too terrible will result from overriding the C library header?!
extern "C++" {
typedef enum {timeNotSet, timeNeedsSync, timeSet
} timeStatus_t ;
typedef enum { timeNotSet, timeNeedsSync, timeSet } timeStatus_t;
typedef enum {
dowInvalid, dowSunday, dowMonday, dowTuesday, dowWednesday, dowThursday, dowFriday, dowSaturday
dowInvalid,
dowSunday,
dowMonday,
dowTuesday,
dowWednesday,
dowThursday,
dowFriday,
dowSaturday
} timeDayOfWeek_t;
typedef enum {
tmSecond, tmMinute, tmHour, tmWday, tmDay,tmMonth, tmYear, tmNbrFields
} tmByteFields;
tmSecond,
tmMinute,
tmHour,
tmWday,
tmDay,
tmMonth,
tmYear,
tmNbrFields
} tmByteFields;
typedef struct {
uint8_t Second;
uint8_t Minute;
uint8_t Hour;
uint8_t Wday; // day of week, sunday is day 1
typedef struct {
uint8_t Second;
uint8_t Minute;
uint8_t Hour;
uint8_t Wday; // day of week, sunday is day 1
uint8_t Day;
uint8_t Month;
uint8_t Year; // offset from 1970;
} tmElements_t, TimeElements, *tmElementsPtr_t;
uint8_t Month;
uint8_t Year; // offset from 1970;
} tmElements_t, TimeElements, *tmElementsPtr_t;
//convenience macros to convert to and from tm years
#define tmYearToCalendar(Y) ((Y) + 1970) // full four digit year
#define CalendarYrToTm(Y) ((Y) - 1970)
#define tmYearToY2k(Y) ((Y) - 30) // offset is from 2000
#define y2kYearToTm(Y) ((Y) + 30)
typedef time_t(*getExternalTime)();
//typedef void (*setExternalTime)(const time_t); // not used in this version
// convenience macros to convert to and from tm years
#define tmYearToCalendar(Y) ((Y) + 1970) // full four digit year
#define CalendarYrToTm(Y) ((Y)-1970)
#define tmYearToY2k(Y) ((Y)-30) // offset is from 2000
#define y2kYearToTm(Y) ((Y) + 30)
typedef time_t (*getExternalTime)();
// typedef void (*setExternalTime)(const time_t); // not used in this version
/*==============================================================================*/
/* Useful Constants */
#define SECS_PER_MIN ((time_t)(60UL))
#define SECS_PER_MIN ((time_t)(60UL))
#define SECS_PER_HOUR ((time_t)(3600UL))
#define SECS_PER_DAY ((time_t)(SECS_PER_HOUR * 24UL))
#define SECS_PER_DAY ((time_t)(SECS_PER_HOUR * 24UL))
#define DAYS_PER_WEEK ((time_t)(7UL))
#define SECS_PER_WEEK ((time_t)(SECS_PER_DAY * DAYS_PER_WEEK))
#define SECS_PER_YEAR ((time_t)(SECS_PER_DAY * 365UL)) // TODO: ought to handle leap years
#define SECS_YR_2000 ((time_t)(946684800UL)) // the time at the start of y2k
/* Useful Macros for getting elapsed time */
#define numberOfSeconds(_time_) ((_time_) % SECS_PER_MIN)
#define numberOfMinutes(_time_) (((_time_) / SECS_PER_MIN) % SECS_PER_MIN)
#define numberOfHours(_time_) (((_time_) % SECS_PER_DAY) / SECS_PER_HOUR)
#define dayOfWeek(_time_) ((((_time_) / SECS_PER_DAY + 4) % DAYS_PER_WEEK)+1) // 1 = Sunday
#define elapsedDays(_time_) ((_time_) / SECS_PER_DAY) // this is number of days since Jan 1 1970
#define elapsedSecsToday(_time_) ((_time_) % SECS_PER_DAY) // the number of seconds since last midnight
// The following macros are used in calculating alarms and assume the clock is set to a date later than Jan 1 1971
// Always set the correct time before settting alarms
#define previousMidnight(_time_) (((_time_) / SECS_PER_DAY) * SECS_PER_DAY) // time at the start of the given day
#define nextMidnight(_time_) (previousMidnight(_time_) + SECS_PER_DAY) // time at the end of the given day
#define elapsedSecsThisWeek(_time_) (elapsedSecsToday(_time_) + ((dayOfWeek(_time_)-1) * SECS_PER_DAY)) // note that week starts on day 1
#define previousSunday(_time_) ((_time_) - elapsedSecsThisWeek(_time_)) // time at the start of the week for the given time
#define nextSunday(_time_) (previousSunday(_time_)+SECS_PER_WEEK) // time at the end of the week for the given time
#define SECS_PER_YEAR \
((time_t)(SECS_PER_DAY * 365UL)) // TODO: ought to handle leap years
#define SECS_YR_2000 ((time_t)(946684800UL)) // the time at the start of y2k
/* Useful Macros for getting elapsed time */
#define numberOfSeconds(_time_) ((_time_) % SECS_PER_MIN)
#define numberOfMinutes(_time_) (((_time_) / SECS_PER_MIN) % SECS_PER_MIN)
#define numberOfHours(_time_) (((_time_) % SECS_PER_DAY) / SECS_PER_HOUR)
#define dayOfWeek(_time_) \
((((_time_) / SECS_PER_DAY + 4) % DAYS_PER_WEEK) + 1) // 1 = Sunday
#define elapsedDays(_time_) \
((_time_) / SECS_PER_DAY) // this is number of days since Jan 1 1970
#define elapsedSecsToday(_time_) \
((_time_) % SECS_PER_DAY) // the number of seconds since last midnight
// The following macros are used in calculating alarms and assume the clock is
// set to a date later than Jan 1 1971 Always set the correct time before
// settting alarms
#define previousMidnight(_time_) \
(((_time_) / SECS_PER_DAY) * \
SECS_PER_DAY) // time at the start of the given day
#define nextMidnight(_time_) \
(previousMidnight(_time_) + SECS_PER_DAY) // time at the end of the given day
#define elapsedSecsThisWeek(_time_) \
(elapsedSecsToday(_time_) + \
((dayOfWeek(_time_) - 1) * SECS_PER_DAY)) // note that week starts on day 1
#define previousSunday(_time_) \
((_time_)-elapsedSecsThisWeek( \
_time_)) // time at the start of the week for the given time
#define nextSunday(_time_) \
(previousSunday(_time_) + \
SECS_PER_WEEK) // time at the end of the week for the given time
/* Useful Macros for converting elapsed time to a time_t */
#define minutesToTime_t ((M)) ( (M) * SECS_PER_MIN)
#define hoursToTime_t ((H)) ( (H) * SECS_PER_HOUR)
#define daysToTime_t ((D)) ( (D) * SECS_PER_DAY) // fixed on Jul 22 2011
#define weeksToTime_t ((W)) ( (W) * SECS_PER_WEEK)
#define minutesToTime_t ((M))((M)*SECS_PER_MIN)
#define hoursToTime_t ((H))((H)*SECS_PER_HOUR)
#define daysToTime_t ((D))((D)*SECS_PER_DAY) // fixed on Jul 22 2011
#define weeksToTime_t ((W))((W)*SECS_PER_WEEK)
/*============================================================================*/
/* time and date functions */
int hour(); // the hour now
int hour(time_t t); // the hour for the given time
int hourFormat12(); // the hour now in 12 hour format
int hourFormat12(time_t t); // the hour for the given time in 12 hour format
uint8_t isAM(); // returns true if time now is AM
uint8_t isAM(time_t t); // returns true the given time is AM
uint8_t isPM(); // returns true if time now is PM
uint8_t isPM(time_t t); // returns true the given time is PM
int minute(); // the minute now
int minute(time_t t); // the minute for the given time
int second(); // the second now
int second(time_t t); // the second for the given time
int hour(); // the hour now
int hour(time_t t); // the hour for the given time
int hourFormat12(); // the hour now in 12 hour format
int hourFormat12(time_t t); // the hour for the given time in 12 hour format
uint8_t isAM(); // returns true if time now is AM
uint8_t isAM(time_t t); // returns true the given time is AM
uint8_t isPM(); // returns true if time now is PM
uint8_t isPM(time_t t); // returns true the given time is PM
int minute(); // the minute now
int minute(time_t t); // the minute for the given time
int second(); // the second now
int second(time_t t); // the second for the given time
#ifdef TIMELIB_ENABLE_MILLIS
int millisecond(); // the millisecond now
int microsecond();
int millisecond(); // the millisecond now
int microsecond();
#endif
int day(); // the day now
int day(time_t t); // the day for the given time
int weekday(); // the weekday now (Sunday is day 1)
int weekday(time_t t); // the weekday for the given time
int month(); // the month now (Jan is month 1)
int month(time_t t); // the month for the given time
int year(); // the full four digit year: (2009, 2010 etc)
int year(time_t t); // the year for the given time
int day(); // the day now
int day(time_t t); // the day for the given time
int weekday(); // the weekday now (Sunday is day 1)
int weekday(time_t t); // the weekday for the given time
int month(); // the month now (Jan is month 1)
int month(time_t t); // the month for the given time
int year(); // the full four digit year: (2009, 2010 etc)
int year(time_t t); // the year for the given time
time_t now(); // return the current time as seconds since Jan 1 1970
#ifdef TIMELIB_ENABLE_MILLIS
time_t now(uint32_t& sysTimeMicros); // return the current time as seconds and microseconds since Jan 1 1970
time_t now(); // return the current time as seconds since Jan 1 1970
#ifdef TIMELIB_ENABLE_MILLIS
time_t now(uint32_t &sysTimeMicros); // return the current time as seconds and
// microseconds since Jan 1 1970
#endif
#ifdef usePPS
void SyncToPPS();
time_t SyncToPPS();
#endif
void setTime(time_t t);
void setTime(int hr,int min,int sec,int day, int month, int yr);
void adjustTime(long adjustment);
void setTime(time_t t);
void setTime(int hr, int min, int sec, int day, int month, int yr);
void adjustTime(long adjustment);
/* date strings */
#define dt_MAX_STRING_LEN \
9 // length of longest date string (excluding terminating null)
char *monthStr(uint8_t month);
char *dayStr(uint8_t day);
char *monthShortStr(uint8_t month);
char *dayShortStr(uint8_t day);
/* date strings */
#define dt_MAX_STRING_LEN 9 // length of longest date string (excluding terminating null)
char* monthStr(uint8_t month);
char* dayStr(uint8_t day);
char* monthShortStr(uint8_t month);
char* dayShortStr(uint8_t day);
/* time sync functions */
timeStatus_t timeStatus(); // indicates if time has been set and recently synchronized
void setSyncProvider( getExternalTime getTimeFunction); // identify the external time provider
void setSyncInterval(time_t interval); // set the number of seconds between re-sync
timeStatus_t
timeStatus(); // indicates if time has been set and recently synchronized
void setSyncProvider(
getExternalTime getTimeFunction); // identify the external time provider
void setSyncInterval(
time_t interval); // set the number of seconds between re-sync
/* low level functions to convert to and from system time */
void breakTime(time_t time, tmElements_t &tm); // break time_t into elements
time_t makeTime(const tmElements_t &tm); // convert time elements into time_t
void breakTime(time_t time, tmElements_t &tm); // break time_t into elements
time_t makeTime(const tmElements_t &tm); // convert time elements into time_t
} // extern "C++"
#endif // __cplusplus
#endif /* _Time_h */

View File

@ -131,7 +131,7 @@ void refreshtheDisplay() {
uint8_t msgWaiting;
char timeState, buff[16];
time_t t = myTZ.toLocal(now()); // note: call now() here *before* locking mutex!
const time_t t = myTZ.toLocal(now()); // note: call now() here *before* locking mutex!
// block i2c bus access
if (I2C_MUTEX_LOCK()) {

View File

@ -358,10 +358,13 @@ void setup() {
#endif
#endif
// start pps timepulse and timekeepr
// start pps timepulse
ESP_LOGI(TAG, "Starting Timekeeper...");
assert(timepulse_init()); // setup timepulse
timepulse_start();
// set time source and sync time
setSyncInterval(TIME_SYNC_INTERVAL * 60);
setSyncProvider(&timeProvider);
// start wifi in monitor mode and start channel rotation timer
ESP_LOGI(TAG, "Starting Wifi...");
@ -414,10 +417,6 @@ void setup() {
#endif
#endif // HAS_BUTTON
// set time source
setSyncInterval(TIME_SYNC_INTERVAL * 60);
setSyncProvider(&timeProvider);
#if defined HAS_IF482 || defined HAS_DCF77
ESP_LOGI(TAG, "Starting Clock Controller...");
clock_init();

View File

@ -15,10 +15,8 @@ time_t timeProvider(void) {
time_t t = 0;
#ifdef HAS_GPS
// xSemaphoreTake(TimePulse, pdMS_TO_TICKS(1100)); // wait for pps
t = get_gpstime(); // fetch recent time from last NEMA record
if (t) {
// t++; // last NMEA record concerns past second, so we add one
#ifdef HAS_RTC
set_rtctime(t); // calibrate RTC
#endif
@ -102,10 +100,10 @@ void timepulse_start(void) {
// interrupt service routine triggered by either pps or esp32 hardware timer
void IRAM_ATTR CLOCKIRQ(void) {
SyncToPPS(); // calibrate systime from Time.h
time_t t = SyncToPPS(); // calibrates UTC systime, see Time.h
if (ClockTask != NULL)
xTaskNotifyFromISR(ClockTask, uint32_t(now()), eSetBits, NULL);
xTaskNotifyFromISR(ClockTask, uint32_t(t), eSetBits, NULL);
#if defined GPS_INT || defined RTC_INT
xSemaphoreGiveFromISR(TimePulse, NULL);
@ -167,61 +165,61 @@ void clock_init(void) {
pinMode(HAS_DCF77, OUTPUT);
#endif
xTaskCreatePinnedToCore(clock_loop, // task function
"clockloop", // name of task
2048, // stack size of task
(void *)1, // task parameter
4, // priority of the task
&ClockTask, // task handle
1); // CPU core
userUTCTime = now();
xTaskCreatePinnedToCore(clock_loop, // task function
"clockloop", // name of task
2048, // stack size of task
(void *)&userUTCTime, // start time as task parameter
4, // priority of the task
&ClockTask, // task handle
1); // CPU core
assert(ClockTask); // has clock task started?
} // clock_init
void clock_loop(void *pvParameters) { // ClockTask
void clock_loop(void *taskparameter) { // ClockTask
configASSERT(((uint32_t)pvParameters) == 1); // FreeRTOS check
// caveat: don't use now() in this task, it will cause a race condition
// due to concurrent access to i2c bus for setting rtc via SyncProvider!
#define nextsec(t) (t + 1) // next second
#define nextmin(t) (t + SECS_PER_MIN + 1) // next minute
TickType_t wakeTime;
uint32_t printtime;
time_t t;
#define t1(t) (t + DCF77_FRAME_SIZE + 1) // future minute for next DCF77 frame
#define t2(t) (t + 1) // future second after sync with 1pps trigger
time_t t = *((time_t *)taskparameter); // UTC time seconds
// preload first DCF frame before start
#ifdef HAS_DCF77
uint8_t *DCFpulse; // pointer on array with DCF pulse bits
DCFpulse = DCF77_Frame(t1(now()));
DCFpulse = DCF77_Frame(nextmin(t));
#endif
// output time telegram for second following sec beginning with timepulse
// output the next second's pulse after timepulse arrived
for (;;) {
xTaskNotifyWait(0x00, ULONG_MAX, &printtime,
portMAX_DELAY); // wait for timepulse
// no confident time -> suppress clock output
// no confident time -> we suppress clock output
if (timeStatus() == timeNotSet)
continue;
t = time_t(printtime);
t = time_t(printtime); // UTC time seconds
#if defined HAS_IF482
// IF482_Pulse(t2(t)); // next second
IF482_Pulse(t); // next second
IF482_Pulse(nextsec(t));
#elif defined HAS_DCF77
if (second(t) == DCF77_FRAME_SIZE - 1) // is it time to load new frame?
DCFpulse = DCF77_Frame(t1(t)); // generate next frame
DCFpulse = DCF77_Frame(nextmin(t)); // generate frame for next minute
if (DCFpulse[DCF77_FRAME_SIZE] !=
minute(t1(t))) // have recent frame? (timepulses could be missed!)
continue;
if (minute(nextmin(t)) == // do we still have a recent frame?
DCFpulse[DCF77_FRAME_SIZE]) // (timepulses could be missed!)
DCF77_Pulse(t, DCFpulse); // then output current second's pulse
else
// DCF77_Pulse(t2(t), DCFpulse); // then output next second of this frame
DCF77_Pulse(t, DCFpulse); // then output next second of this frame
continue; // no recent frame -> we suppress clock output
#endif