Merge pull request #29 from hallard/master

testing
This commit is contained in:
Verkehrsrot 2018-04-04 15:49:31 +02:00 committed by GitHub
commit 00a9bb1497
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
5 changed files with 37 additions and 28 deletions

View File

@ -44,7 +44,7 @@ extern configData_t cfg;
extern uint8_t mydata[]; extern uint8_t mydata[];
extern uint64_t uptimecounter; extern uint64_t uptimecounter;
extern osjob_t sendjob; extern osjob_t sendjob;
extern int countermode, screensaver, adrmode, lorasf, txpower, rlim, salt; extern int countermode, screensaver, adrmode, lorasf, txpower, rlim;
extern bool joinstate; extern bool joinstate;
extern std::set<uint16_t> wifis; extern std::set<uint16_t> wifis;
extern std::set<uint16_t> macs; extern std::set<uint16_t> macs;

View File

@ -22,20 +22,25 @@ static const char *TAG = "macsniff";
static wifi_country_t wifi_country = {.cc=WIFI_MY_COUNTRY, .schan=WIFI_CHANNEL_MIN, .nchan=WIFI_CHANNEL_MAX, .policy=WIFI_COUNTRY_POLICY_MANUAL}; static wifi_country_t wifi_country = {.cc=WIFI_MY_COUNTRY, .schan=WIFI_CHANNEL_MIN, .nchan=WIFI_CHANNEL_MAX, .policy=WIFI_COUNTRY_POLICY_MANUAL};
uint16_t currentScanDevice = 0; uint16_t currentScanDevice = 0;
uint16_t salt;
uint16_t salt_reset(void) {
salt = random(65536); // get new 16bit random for salting hashes
return salt;
}
bool mac_add(uint8_t *paddr, int8_t rssi, bool sniff_type) { bool mac_add(uint8_t *paddr, int8_t rssi, bool sniff_type) {
char counter [6]; // uint16_t -> 2 byte -> 5 decimals + '0' terminator -> 6 chars char counter [6]; // uint16_t -> 2 byte -> 5 decimals + '0' terminator -> 6 chars
char macbuf [21]; // uint64_t -> 8 byte -> 20 decimals + '0' terminator -> 21 chars char macbuf [17]; // uint64_t -> 8 byte -> 16 hexadecimals + '0' terminator -> 17 chars
char typebuff[8]; char typebuff[8];
bool added = false; bool added = false;
uint64_t addr2int; uint32_t addr2int;
uint32_t vendor2int; uint32_t vendor2int;
uint16_t hashedmac; uint16_t hashedmac;
std::pair<std::set<uint16_t>::iterator, bool> newmac;
addr2int = ( (uint64_t)paddr[0] ) | ( (uint64_t)paddr[1] << 8 ) | ( (uint64_t)paddr[2] << 16 ) | \ // Only last 3 MAC Address bytes are used bay MAC Address Anonymization
( (uint64_t)paddr[3] << 24 ) | ( (uint64_t)paddr[4] << 32 ) | ( (uint64_t)paddr[5] << 40 ); addr2int = ( (uint32_t)paddr[3] ) | ( (uint32_t)paddr[4] << 8 ) | ( (uint32_t)paddr[5] << 16 );
#ifdef VENDORFILTER #ifdef VENDORFILTER
vendor2int = ( (uint32_t)paddr[2] ) | ( (uint32_t)paddr[1] << 8 ) | ( (uint32_t)paddr[0] << 16 ); vendor2int = ( (uint32_t)paddr[2] ) | ( (uint32_t)paddr[1] << 8 ) | ( (uint32_t)paddr[0] << 16 );
@ -46,30 +51,32 @@ bool mac_add(uint8_t *paddr, int8_t rssi, bool sniff_type) {
// salt and hash MAC, and if new unique one, store identifier in container and increment counter on display // salt and hash MAC, and if new unique one, store identifier in container and increment counter on display
// https://en.wikipedia.org/wiki/MAC_Address_Anonymization // https://en.wikipedia.org/wiki/MAC_Address_Anonymization
addr2int |= (uint64_t) salt << 48; // prepend 16-bit salt to 48-bit MAC addr2int += (uint32_t) salt << 16; // add 16-bit salt to 24-bit MAC
snprintf(macbuf, 21, "%llx", addr2int); // convert unsigned 64-bit salted MAC to 16 digit hex string snprintf(macbuf, sizeof(macbuf), "%08X", addr2int); // convert unsigned 32-bit salted MAC to 8 digit hex string
hashedmac = rokkit(macbuf, 5); // hash MAC string, use 5 chars to fit hash in uint16_t container hashedmac = rokkit(macbuf, 5); // hash MAC string, use 5 chars to fit hash in uint16_t container
newmac = macs.insert(hashedmac); // add hashed MAC to total container if new unique auto newmac = macs.insert(hashedmac); // add hashed MAC to total container if new unique
added = newmac.second; // true if hashed MAC is unique in container added = newmac.second ? true:false; // true if hashed MAC is unique in container
if (sniff_type == MAC_SNIFF_WIFI ) { if (sniff_type == MAC_SNIFF_WIFI ) {
rgb_set_color(COLOR_GREEN); rgb_set_color(COLOR_GREEN);
newmac = wifis.insert(hashedmac); // add hashed MAC to wifi container if new unique wifis.insert(hashedmac); // add hashed MAC to wifi container if new unique
strcpy(typebuff, "WiFi"); strcpy(typebuff, "WiFi");
rgb_set_color(COLOR_NONE); rgb_set_color(COLOR_NONE);
} else if (sniff_type == MAC_SNIFF_BLE ) { } else if (sniff_type == MAC_SNIFF_BLE ) {
rgb_set_color(COLOR_MAGENTA); rgb_set_color(COLOR_MAGENTA);
newmac = bles.insert(hashedmac); // add hashed MAC to BLE container if new unique bles.insert(hashedmac); // add hashed MAC to BLE container if new unique
strcpy(typebuff, "BLE "); strcpy(typebuff, "BLE ");
rgb_set_color(COLOR_NONE); rgb_set_color(COLOR_NONE);
} }
if (added) { // first time seen this WIFI or BLE MAC if (added) { // first time seen this WIFI or BLE MAC
snprintf(counter, 6, "%i", macs.size()); // convert 16-bit MAC counter to decimal counter value snprintf(counter, sizeof(counter), "%d", (uint16_t) macs.size()); // convert 16-bit MAC counter to decimal counter value
u8x8.draw2x2String(0, 0, counter); // display number on unique macs total Wifi + BLE u8x8.draw2x2String(0, 0, counter); // display number on unique macs total Wifi + BLE
ESP_LOGI(TAG, "%s RSSI %04d -> Hash %04x -> counted #%05i", typebuff, rssi, hashedmac, macs.size()); ESP_LOGI(TAG, "%s RSSI %ddBi -> Hash %04X -> WiFi:%d BLE:%d Tot:%d",
typebuff, rssi, hashedmac,
(int) wifis.size(), (int) bles.size(), (int) macs.size());
} else { // already seen WIFI or BLE MAC } else { // already seen WIFI or BLE MAC
ESP_LOGI(TAG, "%s RSSI %04d -> Hash %04x -> already seen", typebuff, rssi, hashedmac); ESP_LOGI(TAG, "%s RSSI %ddBi -> Hash %04X -> already seen", typebuff, rssi, hashedmac);
} }
#ifdef VENDORFILTER #ifdef VENDORFILTER
@ -99,7 +106,6 @@ class MyAdvertisedDeviceCallbacks: public BLEAdvertisedDeviceCallbacks {
void BLECount() { void BLECount() {
ESP_LOGI(TAG, "BLE scan started"); ESP_LOGI(TAG, "BLE scan started");
int blenum = 0; // Total device seen on this scan session
currentScanDevice = 0; // Set 0 seen device on this scan session currentScanDevice = 0; // Set 0 seen device on this scan session
u8x8.clearLine(3); u8x8.clearLine(3);
u8x8.drawString(0,3,"BLE Scan..."); u8x8.drawString(0,3,"BLE Scan...");
@ -108,11 +114,11 @@ void BLECount() {
pBLEScan->setAdvertisedDeviceCallbacks(new MyAdvertisedDeviceCallbacks()); pBLEScan->setAdvertisedDeviceCallbacks(new MyAdvertisedDeviceCallbacks());
pBLEScan->setActiveScan(true); //active scan uses more power, but get results faster pBLEScan->setActiveScan(true); //active scan uses more power, but get results faster
BLEScanResults foundDevices = pBLEScan->start(cfg.blescantime); BLEScanResults foundDevices = pBLEScan->start(cfg.blescantime);
blenum=foundDevices.getCount(); int blenum=foundDevices.getCount();
ESP_LOGI(TAG, "BLE scan done, seen %d device(s)", blenum);
u8x8.clearLine(3); u8x8.clearLine(3);
u8x8.setCursor(0,3); u8x8.setCursor(0,3);
u8x8.printf("BLE#: %-5i %-3i",bles.size(), blenum); u8x8.printf("BLE#: %-4d %d", (int) bles.size(), currentScanDevice);
ESP_LOGI(TAG, "BLE scan done");
} }
#endif #endif
@ -142,7 +148,7 @@ void wifi_sniffer_packet_handler(void* buff, wifi_promiscuous_pkt_type_t type) {
uint8_t *p = (uint8_t *) hdr->addr2; uint8_t *p = (uint8_t *) hdr->addr2;
mac_add(p, ppkt->rx_ctrl.rssi, MAC_SNIFF_WIFI) ; mac_add(p, ppkt->rx_ctrl.rssi, MAC_SNIFF_WIFI) ;
} else { } else {
ESP_LOGI(TAG, "WiFi RSSI %04d -> ignoring (limit: %i)", ppkt->rx_ctrl.rssi, cfg.rssilimit); ESP_LOGI(TAG, "WiFi RSSI %d -> ignoring (limit: %d)", ppkt->rx_ctrl.rssi, cfg.rssilimit);
} }
yield(); yield();
} }

View File

@ -19,6 +19,7 @@ typedef struct {
uint8_t payload[0]; /* network data ended with 4 bytes csum (CRC32) */ uint8_t payload[0]; /* network data ended with 4 bytes csum (CRC32) */
} wifi_ieee80211_packet_t; } wifi_ieee80211_packet_t;
uint16_t salt_reset(void);
void BLECount(); void BLECount();
void wifi_sniffer_init(void); void wifi_sniffer_init(void);
void wifi_sniffer_set_channel(uint8_t channel); void wifi_sniffer_set_channel(uint8_t channel);

View File

@ -30,6 +30,7 @@ Refer to LICENSE.txt file in repository for more details.
// OLED driver // OLED driver
#include <U8x8lib.h> #include <U8x8lib.h>
#include <Wire.h> // Does nothing and avoid any compilation error with I2C
// LMIC-Arduino LoRaWAN Stack // LMIC-Arduino LoRaWAN Stack
#include "loraconf.h" #include "loraconf.h"
@ -45,7 +46,7 @@ configData_t cfg; // struct holds current device configuration
osjob_t sendjob, initjob; // LMIC osjob_t sendjob, initjob; // LMIC
// Initialize global variables // Initialize global variables
int macnum = 0, salt; int macnum = 0;
uint64_t uptimecounter = 0; uint64_t uptimecounter = 0;
bool joinstate = false; bool joinstate = false;
@ -270,11 +271,11 @@ void wifi_sniffer_loop(void * pvParameters) {
wifi_sniffer_set_channel(channel); wifi_sniffer_set_channel(channel);
ESP_LOGI(TAG, "Wifi set channel %d", channel); ESP_LOGI(TAG, "Wifi set channel %d", channel);
u8x8.setCursor(0,5); u8x8.setCursor(0,5);
u8x8.printf(!cfg.rssilimit ? "RLIM: off" : "RLIM: %4i", cfg.rssilimit); u8x8.printf(!cfg.rssilimit ? "RLIM: off" : "RLIM: %d", cfg.rssilimit);
u8x8.setCursor(11,5); u8x8.setCursor(11,5);
u8x8.printf("ch:%02i", channel); u8x8.printf("ch:%02i", channel);
u8x8.setCursor(0,4); u8x8.setCursor(0,4);
u8x8.printf("MAC#: %-5i", wifis.size()); u8x8.printf("MAC#: %-5d", (int) wifis.size());
// duration of one wifi scan loop reached? then send data and begin new scan cycle // duration of one wifi scan loop reached? then send data and begin new scan cycle
if( nloop >= ( (100 / cfg.wifichancycle) * (cfg.wifiscancycle * 2)) +1 ) { if( nloop >= ( (100 / cfg.wifichancycle) * (cfg.wifiscancycle * 2)) +1 ) {
@ -291,8 +292,9 @@ void wifi_sniffer_loop(void * pvParameters) {
#ifdef BLECOUNTER #ifdef BLECOUNTER
bles.clear(); // clear BLE macs counter bles.clear(); // clear BLE macs counter
#endif #endif
salt = random(65536); // get new 16bit random for salting hashes salt_reset(); // get new salt for salting hashes
u8x8.clearLine(0); u8x8.clearLine(1); // clear Display counter u8x8.clearLine(0); // clear Display counter
u8x8.clearLine(1);
} }
// wait until payload is sent, while wifi scanning and mac counting task continues // wait until payload is sent, while wifi scanning and mac counting task continues
@ -475,7 +477,7 @@ void setup() {
init_display(PROGNAME, PROGVERSION); init_display(PROGNAME, PROGVERSION);
u8x8.setPowerSave(!cfg.screenon); // set display off if disabled u8x8.setPowerSave(!cfg.screenon); // set display off if disabled
u8x8.setCursor(0,5); u8x8.setCursor(0,5);
u8x8.printf(!cfg.rssilimit ? "RLIM: off" : "RLIM: %4i", cfg.rssilimit); u8x8.printf(!cfg.rssilimit ? "RLIM: off" : "RLIM: %d", cfg.rssilimit);
u8x8.drawString(0,6,"Join Wait "); u8x8.drawString(0,6,"Join Wait ");
// output LoRaWAN keys to console // output LoRaWAN keys to console
@ -489,7 +491,7 @@ wifi_sniffer_init(); // setup wifi in monitor mode and start MAC counting
// initialize salt value using esp_random() called by random() in arduino-esp32 core // initialize salt value using esp_random() called by random() in arduino-esp32 core
// note: do this *after* wifi has started, since gets it's seed from RF noise // note: do this *after* wifi has started, since gets it's seed from RF noise
salt = random(65536); // get new 16bit random for salting hashes salt_reset(); // get new 16bit for salting hashes
// Start FreeRTOS tasks // Start FreeRTOS tasks
#if CONFIG_FREERTOS_UNICORE // run all tasks on core 0 and switch off core 1 #if CONFIG_FREERTOS_UNICORE // run all tasks on core 0 and switch off core 1

View File

@ -70,7 +70,7 @@ void set_reset(int val) {
macs.clear(); // clear all macs container macs.clear(); // clear all macs container
wifis.clear(); // clear Wifi macs container wifis.clear(); // clear Wifi macs container
bles.clear(); // clear BLE macs container bles.clear(); // clear BLE macs container
salt = random(65536); // get new 16bit random for salting hashes salt_reset(); // get new 16bit salt
u8x8.clearLine(0); u8x8.clearLine(1); // clear Display counter u8x8.clearLine(0); u8x8.clearLine(1); // clear Display counter
u8x8.clearLine(5); u8x8.clearLine(5);
u8x8.setCursor(0, 5); u8x8.setCursor(0, 5);