ESP32-PaxCounter/src/power.cpp

342 lines
9.1 KiB
C++
Raw Normal View History

2019-09-07 19:52:25 +02:00
// Basic config
#include "globals.h"
#include "power.h"
2019-09-07 23:10:53 +02:00
// Local logging tag
static const char TAG[] = __FILE__;
2019-09-07 19:52:25 +02:00
RTC_DATA_ATTR int64_t sleep_enter_time;
2019-10-16 21:14:34 +02:00
RTC_DATA_ATTR runmode_t RTC_runmode = RUNMODE_NORMAL;
2019-09-07 23:10:53 +02:00
#ifdef HAS_PMU
2019-09-07 19:52:25 +02:00
2019-09-09 12:06:23 +02:00
AXP20X_Class pmu;
2019-09-07 19:52:25 +02:00
2019-10-16 21:14:34 +02:00
void AXP192_powerevent_IRQ(void) {
2019-09-30 12:35:03 +02:00
pmu.readIRQ();
if (pmu.isVbusOverVoltageIRQ())
ESP_LOGI(TAG, "USB voltage %.2fV too high.", pmu.getVbusVoltage() / 1000);
if (pmu.isVbusPlugInIRQ())
ESP_LOGI(TAG, "USB plugged, %.2fV @ %.0mA", pmu.getVbusVoltage() / 1000,
pmu.getVbusCurrent());
if (pmu.isVbusRemoveIRQ())
ESP_LOGI(TAG, "USB unplugged.");
if (pmu.isBattPlugInIRQ())
ESP_LOGI(TAG, "Battery is connected.");
if (pmu.isBattRemoveIRQ())
ESP_LOGI(TAG, "Battery was removed.");
if (pmu.isChargingIRQ())
ESP_LOGI(TAG, "Battery charging.");
if (pmu.isChargingDoneIRQ())
ESP_LOGI(TAG, "Battery charging done.");
if (pmu.isBattTempLowIRQ())
ESP_LOGI(TAG, "Battery high temperature.");
if (pmu.isBattTempHighIRQ())
ESP_LOGI(TAG, "Battery low temperature.");
2019-10-16 21:14:34 +02:00
// esp32 sleep mode, can be exited by pressing user button
#ifdef HAS_BUTTON
if (pmu.isPEKShortPressIRQ() && (RTC_runmode == RUNMODE_NORMAL)) {
enter_deepsleep(0, HAS_BUTTON);
}
#endif
2019-09-30 12:35:03 +02:00
// shutdown power
if (pmu.isPEKLongtPressIRQ()) {
AXP192_power(false); // switch off Lora, GPS, display
2019-10-12 16:00:22 +02:00
pmu.shutdown(); // switch off device
2019-09-30 12:35:03 +02:00
}
2019-09-30 12:35:03 +02:00
pmu.clearIRQ();
// refresh stored voltage value
read_voltage();
}
void AXP192_power(bool on) {
if (on) {
pmu.setPowerOutPut(AXP192_LDO2, AXP202_ON); // Lora on T-Beam V1.0
pmu.setPowerOutPut(AXP192_LDO3, AXP202_ON); // Gps on T-Beam V1.0
pmu.setPowerOutPut(AXP192_DCDC1, AXP202_ON); // OLED on T-Beam v1.0
pmu.setChgLEDMode(AXP20X_LED_LOW_LEVEL);
// pmu.setChgLEDMode(AXP20X_LED_BLINK_1HZ);
} else {
pmu.setChgLEDMode(AXP20X_LED_OFF);
2019-10-16 21:14:34 +02:00
// we don't cut off power of display, because then display blocks i2c bus
// pmu.setPowerOutPut(AXP192_DCDC1, AXP202_OFF);
pmu.setPowerOutPut(AXP192_LDO3, AXP202_OFF);
pmu.setPowerOutPut(AXP192_LDO2, AXP202_OFF);
}
}
void AXP192_showstatus(void) {
2019-09-30 12:35:03 +02:00
if (pmu.isBatteryConnect())
if (pmu.isChargeing())
ESP_LOGI(TAG, "Battery charging, %.2fV @ %.0fmAh",
pmu.getBattVoltage() / 1000, pmu.getBattChargeCurrent());
else
2019-09-30 12:35:03 +02:00
ESP_LOGI(TAG, "Battery not charging");
else
ESP_LOGI(TAG, "No Battery");
if (pmu.isVBUSPlug())
ESP_LOGI(TAG, "USB powered, %.0fmW",
pmu.getVbusVoltage() / 1000 * pmu.getVbusCurrent());
else
ESP_LOGI(TAG, "USB not present");
}
2019-09-07 23:10:53 +02:00
void AXP192_init(void) {
2019-09-08 12:55:27 +02:00
2019-10-12 16:00:22 +02:00
if (pmu.begin(i2c_readBytes, i2c_writeBytes, AXP192_PRIMARY_ADDRESS) ==
AXP_FAIL)
2019-09-30 12:35:03 +02:00
ESP_LOGI(TAG, "AXP192 PMU initialization failed");
else {
2019-09-09 12:06:23 +02:00
2019-09-30 12:35:03 +02:00
// configure AXP192
pmu.setDCDC1Voltage(3300); // for external OLED display
pmu.setTimeOutShutdown(false); // no automatic shutdown
pmu.setTSmode(AXP_TS_PIN_MODE_DISABLE); // TS pin mode off to save power
2019-09-09 12:06:23 +02:00
2019-09-30 12:35:03 +02:00
// switch ADCs on
pmu.adc1Enable(AXP202_BATT_VOL_ADC1, true);
pmu.adc1Enable(AXP202_BATT_CUR_ADC1, true);
pmu.adc1Enable(AXP202_VBUS_VOL_ADC1, true);
pmu.adc1Enable(AXP202_VBUS_CUR_ADC1, true);
2019-09-21 08:23:39 +02:00
2019-09-30 12:35:03 +02:00
// switch power rails on
AXP192_power(true);
2019-09-20 18:11:05 +02:00
#ifdef PMU_INT
2019-09-30 12:35:03 +02:00
pinMode(PMU_INT, INPUT_PULLUP);
attachInterrupt(digitalPinToInterrupt(PMU_INT), PMUIRQ, FALLING);
pmu.enableIRQ(AXP202_VBUS_REMOVED_IRQ | AXP202_VBUS_CONNECT_IRQ |
AXP202_BATT_REMOVED_IRQ | AXP202_BATT_CONNECT_IRQ |
AXP202_CHARGING_FINISHED_IRQ,
1);
pmu.clearIRQ();
#endif // PMU_INT
2019-09-09 12:06:23 +02:00
2019-09-30 12:35:03 +02:00
ESP_LOGI(TAG, "AXP192 PMU initialized");
}
}
// helper functions for mutexing i2c access
uint8_t i2c_readBytes(uint8_t addr, uint8_t reg, uint8_t *data, uint8_t len) {
if (I2C_MUTEX_LOCK()) {
uint8_t ret = 0;
Wire.beginTransmission(addr);
Wire.write(reg);
Wire.endTransmission(false);
uint8_t cnt = Wire.requestFrom(addr, (uint8_t)len, (uint8_t)1);
2019-10-12 16:00:22 +02:00
if (!cnt)
2019-09-30 12:35:03 +02:00
ret = 0xFF;
uint16_t index = 0;
while (Wire.available()) {
2019-10-12 16:00:22 +02:00
if (index > len) {
ret = 0xFF;
goto finish;
}
2019-09-30 12:35:03 +02:00
data[index++] = Wire.read();
}
2019-10-12 16:00:22 +02:00
finish:
2019-09-30 12:35:03 +02:00
I2C_MUTEX_UNLOCK(); // release i2c bus access
return ret;
} else {
ESP_LOGW(TAG, "[%0.3f] i2c mutex lock failed", millis() / 1000.0);
return 0xFF;
}
}
uint8_t i2c_writeBytes(uint8_t addr, uint8_t reg, uint8_t *data, uint8_t len) {
if (I2C_MUTEX_LOCK()) {
2019-10-12 16:00:22 +02:00
2019-09-30 12:35:03 +02:00
uint8_t ret = 0;
Wire.beginTransmission(addr);
Wire.write(reg);
for (uint16_t i = 0; i < len; i++) {
Wire.write(data[i]);
2019-09-09 12:06:23 +02:00
}
2019-09-30 12:35:03 +02:00
ret = Wire.endTransmission();
2019-09-09 12:06:23 +02:00
I2C_MUTEX_UNLOCK(); // release i2c bus access
2019-10-12 16:00:22 +02:00
// return ret ? 0xFF : ret;
return ret ? ret : 0xFF;
2019-09-30 12:35:03 +02:00
} else {
ESP_LOGW(TAG, "[%0.3f] i2c mutex lock failed", millis() / 1000.0);
return 0xFF;
}
2019-09-07 19:52:25 +02:00
}
2019-09-30 12:35:03 +02:00
2019-09-07 23:10:53 +02:00
#endif // HAS_PMU
#ifdef BAT_MEASURE_ADC
esp_adc_cal_characteristics_t *adc_characs =
(esp_adc_cal_characteristics_t *)calloc(
1, sizeof(esp_adc_cal_characteristics_t));
2019-09-08 12:55:27 +02:00
#ifndef BAT_MEASURE_ADC_UNIT // ADC1
2019-09-07 23:10:53 +02:00
static const adc1_channel_t adc_channel = BAT_MEASURE_ADC;
2019-09-08 12:55:27 +02:00
#else // ADC2
static const adc2_channel_t adc_channel = BAT_MEASURE_ADC;
#endif
2019-09-07 23:10:53 +02:00
static const adc_atten_t atten = ADC_ATTEN_DB_11;
static const adc_unit_t unit = ADC_UNIT_1;
2019-09-08 12:55:27 +02:00
#endif // BAT_MEASURE_ADC
2019-09-07 23:10:53 +02:00
2019-10-16 21:14:34 +02:00
void enter_deepsleep(const int wakeup_sec, const gpio_num_t wakeup_gpio) {
if ((!wakeup_sec) && (!wakeup_gpio) && (RTC_runmode == RUNMODE_NORMAL))
return;
// set up power domains
esp_sleep_pd_config(ESP_PD_DOMAIN_RTC_SLOW_MEM, ESP_PD_OPTION_ON);
2019-10-16 21:14:34 +02:00
// set wakeup timer
if (wakeup_sec)
esp_sleep_enable_timer_wakeup(wakeup_sec * 1000000);
// set wakeup gpio
if (wakeup_gpio != NOT_A_PIN) {
rtc_gpio_isolate(wakeup_gpio);
esp_sleep_enable_ext1_wakeup(1ULL << wakeup_gpio, ESP_EXT1_WAKEUP_ALL_LOW);
}
// store LMIC counters and time
RTCseqnoUp = LMIC.seqnoUp;
RTCseqnoDn = LMIC.seqnoDn;
// store sleep enter time
sleep_enter_time = esp_timer_get_time();
2019-10-16 21:14:34 +02:00
// halt interrupts accessing i2c bus
mask_user_IRQ();
// switch off display
#ifdef HAS_DISPLAY
shutdown_display();
#endif
// switch off wifi & ble
#if (BLECOUNTER)
stop_BLEscan();
#endif
// switch off power if has PMU
#ifdef HAS_PMU
AXP192_power(false); // switch off Lora, GPS, display
#endif
// shutdown i2c bus
i2c_deinit();
// enter sleep mode
esp_deep_sleep_start();
}
int64_t exit_deepsleep(void) {
2019-10-16 21:14:34 +02:00
int64_t sleep_time_ms = (esp_timer_get_time() - sleep_enter_time) / 1000;
2019-10-16 21:14:34 +02:00
// switch on power if has PMU
#ifdef HAS_PMU
AXP192_power(true); // power on Lora, GPS, display
#endif
// re-init i2c bus
void i2c_init();
switch (esp_sleep_get_wakeup_cause()) {
case ESP_SLEEP_WAKEUP_EXT1:
case ESP_SLEEP_WAKEUP_TIMER:
RTC_runmode = RUNMODE_WAKEUP;
ESP_LOGI(TAG, "[%0.3f] wake up from deep sleep after %dms", sleep_time_ms);
break;
case ESP_SLEEP_WAKEUP_UNDEFINED:
default:
RTC_runmode = RUNMODE_NORMAL;
}
if (RTC_runmode == RUNMODE_WAKEUP)
return sleep_time_ms;
else
return -1;
}
2019-09-07 23:10:53 +02:00
void calibrate_voltage(void) {
#ifdef BAT_MEASURE_ADC
2019-09-08 12:55:27 +02:00
// configure ADC
#ifndef BAT_MEASURE_ADC_UNIT // ADC1
2019-09-07 23:10:53 +02:00
ESP_ERROR_CHECK(adc1_config_width(ADC_WIDTH_BIT_12));
ESP_ERROR_CHECK(adc1_config_channel_atten(adc_channel, atten));
2019-09-08 12:55:27 +02:00
#else // ADC2
// ESP_ERROR_CHECK(adc2_config_width(ADC_WIDTH_BIT_12));
2019-09-08 12:55:27 +02:00
ESP_ERROR_CHECK(adc2_config_channel_atten(adc_channel, atten));
#endif
2019-09-07 23:10:53 +02:00
// calibrate ADC
esp_adc_cal_value_t val_type = esp_adc_cal_characterize(
unit, atten, ADC_WIDTH_BIT_12, DEFAULT_VREF, adc_characs);
// show ADC characterization base
if (val_type == ESP_ADC_CAL_VAL_EFUSE_TP) {
ESP_LOGI(TAG,
"ADC characterization based on Two Point values stored in eFuse");
} else if (val_type == ESP_ADC_CAL_VAL_EFUSE_VREF) {
ESP_LOGI(TAG,
"ADC characterization based on reference voltage stored in eFuse");
} else {
ESP_LOGI(TAG, "ADC characterization based on default reference voltage");
}
#endif
}
2019-09-20 09:04:24 +02:00
bool batt_sufficient() {
2019-09-07 23:10:53 +02:00
#if (defined HAS_PMU || defined BAT_MEASURE_ADC)
2019-09-20 09:04:24 +02:00
uint16_t volts = read_voltage();
return ((volts < 1000) ||
(volts > OTA_MIN_BATT)); // no battery or battery sufficient
#else
return true;
2019-09-07 23:10:53 +02:00
#endif
2019-09-20 09:04:24 +02:00
}
2019-09-07 23:10:53 +02:00
uint16_t read_voltage() {
uint16_t voltage = 0;
#ifdef HAS_PMU
2019-09-30 12:35:03 +02:00
voltage = pmu.isVBUSPlug() ? 0xffff : pmu.getBattVoltage();
2019-09-07 23:10:53 +02:00
#else
#ifdef BAT_MEASURE_ADC
// multisample ADC
uint32_t adc_reading = 0;
2019-09-08 12:55:27 +02:00
#ifndef BAT_MEASURE_ADC_UNIT // ADC1
2019-09-25 15:00:52 +02:00
for (int i = 0; i < NO_OF_SAMPLES; i++) {
2019-09-07 23:10:53 +02:00
adc_reading += adc1_get_raw(adc_channel);
2019-09-25 15:00:52 +02:00
}
2019-09-08 12:55:27 +02:00
#else // ADC2
2019-09-25 15:00:52 +02:00
int adc_buf = 0;
for (int i = 0; i < NO_OF_SAMPLES; i++) {
2019-09-08 12:55:27 +02:00
ESP_ERROR_CHECK(adc2_get_raw(adc_channel, ADC_WIDTH_BIT_12, &adc_buf));
adc_reading += adc_buf;
2019-09-07 23:10:53 +02:00
}
2019-10-12 16:00:22 +02:00
#endif // BAT_MEASURE_ADC_UNIT
2019-09-07 23:10:53 +02:00
adc_reading /= NO_OF_SAMPLES;
// Convert ADC reading to voltage in mV
voltage = esp_adc_cal_raw_to_voltage(adc_reading, adc_characs);
2019-10-12 16:00:22 +02:00
#endif // BAT_MEASURE_ADC
2019-09-07 23:10:53 +02:00
#ifdef BAT_VOLTAGE_DIVIDER
voltage *= BAT_VOLTAGE_DIVIDER;
2019-09-08 12:55:27 +02:00
#endif // BAT_VOLTAGE_DIVIDER
2019-09-07 23:10:53 +02:00
#endif // HAS_PMU
return voltage;
}