ESP32-PaxCounter/lib/Bosch-BSEC-1.4.7.1/examples/bsec_integration.c

560 lines
24 KiB
C
Raw Normal View History

/*
* Copyright (C) 2017 Robert Bosch. All Rights Reserved.
*
* Disclaimer
*
* Common:
* Bosch Sensortec products are developed for the consumer goods industry. They may only be used
* within the parameters of the respective valid product data sheet. Bosch Sensortec products are
* provided with the express understanding that there is no warranty of fitness for a particular purpose.
* They are not fit for use in life-sustaining, safety or security sensitive systems or any system or device
* that may lead to bodily harm or property damage if the system or device malfunctions. In addition,
* Bosch Sensortec products are not fit for use in products which interact with motor vehicle systems.
* The resale and/or use of products are at the purchasers own risk and his own responsibility. The
* examination of fitness for the intended use is the sole responsibility of the Purchaser.
*
* The purchaser shall indemnify Bosch Sensortec from all third party claims, including any claims for
* incidental, or consequential damages, arising from any product use not covered by the parameters of
* the respective valid product data sheet or not approved by Bosch Sensortec and reimburse Bosch
* Sensortec for all costs in connection with such claims.
*
* The purchaser must monitor the market for the purchased products, particularly with regard to
* product safety and inform Bosch Sensortec without delay of all security relevant incidents.
*
* Engineering Samples are marked with an asterisk (*) or (e). Samples may vary from the valid
* technical specifications of the product series. They are therefore not intended or fit for resale to third
* parties or for use in end products. Their sole purpose is internal client testing. The testing of an
* engineering sample may in no way replace the testing of a product series. Bosch Sensortec
* assumes no liability for the use of engineering samples. By accepting the engineering samples, the
* Purchaser agrees to indemnify Bosch Sensortec from all claims arising from the use of engineering
* samples.
*
* Special:
* This software module (hereinafter called "Software") and any information on application-sheets
* (hereinafter called "Information") is provided free of charge for the sole purpose to support your
* application work. The Software and Information is subject to the following terms and conditions:
*
* The Software is specifically designed for the exclusive use for Bosch Sensortec products by
* personnel who have special experience and training. Do not use this Software if you do not have the
* proper experience or training.
*
* This Software package is provided `` as is `` and without any expressed or implied warranties,
* including without limitation, the implied warranties of merchantability and fitness for a particular
* purpose.
*
* Bosch Sensortec and their representatives and agents deny any liability for the functional impairment
* of this Software in terms of fitness, performance and safety. Bosch Sensortec and their
* representatives and agents shall not be liable for any direct or indirect damages or injury, except as
* otherwise stipulated in mandatory applicable law.
*
* The Information provided is believed to be accurate and reliable. Bosch Sensortec assumes no
* responsibility for the consequences of use of such Information nor for any infringement of patents or
* other rights of third parties which may result from its use. No license is granted by implication or
* otherwise under any patent or patent rights of Bosch. Specifications mentioned in the Information are
* subject to change without notice.
*
* It is not allowed to deliver the source code of the Software to any third party without permission of
* Bosch Sensortec.
*
*/
/*!
* @file bsec_integration.c
*
* @brief
* Private part of the example for using of BSEC library.
*/
/*!
* @addtogroup bsec_examples BSEC Examples
* @brief BSEC usage examples
* @{*/
/**********************************************************************************************************************/
/* header files */
/**********************************************************************************************************************/
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include "bsec_integration.h"
/**********************************************************************************************************************/
/* local macro definitions */
/**********************************************************************************************************************/
#define NUM_USED_OUTPUTS 8
/**********************************************************************************************************************/
/* global variable declarations */
/**********************************************************************************************************************/
/* Global sensor APIs data structure */
static struct bme680_dev bme680_g;
/* Global temperature offset to be subtracted */
static float bme680_temperature_offset_g = 0.0f;
/**********************************************************************************************************************/
/* functions */
/**********************************************************************************************************************/
/*!
* @brief Virtual sensor subscription
* Please call this function before processing of data using bsec_do_steps function
*
* @param[in] sample_rate mode to be used (either BSEC_SAMPLE_RATE_ULP or BSEC_SAMPLE_RATE_LP)
*
* @return subscription result, zero when successful
*/
static bsec_library_return_t bme680_bsec_update_subscription(float sample_rate)
{
bsec_sensor_configuration_t requested_virtual_sensors[NUM_USED_OUTPUTS];
uint8_t n_requested_virtual_sensors = NUM_USED_OUTPUTS;
bsec_sensor_configuration_t required_sensor_settings[BSEC_MAX_PHYSICAL_SENSOR];
uint8_t n_required_sensor_settings = BSEC_MAX_PHYSICAL_SENSOR;
bsec_library_return_t status = BSEC_OK;
/* note: Virtual sensors as desired to be added here */
requested_virtual_sensors[0].sensor_id = BSEC_OUTPUT_IAQ;
requested_virtual_sensors[0].sample_rate = sample_rate;
requested_virtual_sensors[1].sensor_id = BSEC_OUTPUT_SENSOR_HEAT_COMPENSATED_TEMPERATURE;
requested_virtual_sensors[1].sample_rate = sample_rate;
requested_virtual_sensors[2].sensor_id = BSEC_OUTPUT_RAW_PRESSURE;
requested_virtual_sensors[2].sample_rate = sample_rate;
requested_virtual_sensors[3].sensor_id = BSEC_OUTPUT_SENSOR_HEAT_COMPENSATED_HUMIDITY;
requested_virtual_sensors[3].sample_rate = sample_rate;
requested_virtual_sensors[4].sensor_id = BSEC_OUTPUT_RAW_GAS;
requested_virtual_sensors[4].sample_rate = sample_rate;
requested_virtual_sensors[5].sensor_id = BSEC_OUTPUT_RAW_TEMPERATURE;
requested_virtual_sensors[5].sample_rate = sample_rate;
requested_virtual_sensors[6].sensor_id = BSEC_OUTPUT_RAW_HUMIDITY;
requested_virtual_sensors[6].sample_rate = sample_rate;
requested_virtual_sensors[7].sensor_id = BSEC_OUTPUT_STATIC_IAQ;
requested_virtual_sensors[7].sample_rate = sample_rate;
/* Call bsec_update_subscription() to enable/disable the requested virtual sensors */
status = bsec_update_subscription(requested_virtual_sensors, n_requested_virtual_sensors, required_sensor_settings,
&n_required_sensor_settings);
return status;
}
/*!
* @brief Initialize the BME680 sensor and the BSEC library
*
* @param[in] sample_rate mode to be used (either BSEC_SAMPLE_RATE_ULP or BSEC_SAMPLE_RATE_LP)
* @param[in] temperature_offset device-specific temperature offset (due to self-heating)
* @param[in] bus_write pointer to the bus writing function
* @param[in] bus_read pointer to the bus reading function
* @param[in] sleep pointer to the system specific sleep function
* @param[in] state_load pointer to the system-specific state load function
* @param[in] config_load pointer to the system-specific config load function
*
* @return zero if successful, negative otherwise
*/
return_values_init bsec_iot_init(float sample_rate, float temperature_offset, bme680_com_fptr_t bus_write,
bme680_com_fptr_t bus_read, sleep_fct sleep, state_load_fct state_load, config_load_fct config_load)
{
return_values_init ret = {BME680_OK, BSEC_OK};
bsec_library_return_t bsec_status = BSEC_OK;
uint8_t bsec_state[BSEC_MAX_PROPERTY_BLOB_SIZE] = {0};
uint8_t bsec_config[BSEC_MAX_PROPERTY_BLOB_SIZE] = {0};
uint8_t work_buffer[BSEC_MAX_PROPERTY_BLOB_SIZE] = {0};
int bsec_state_len, bsec_config_len;
/* Fixed I2C configuration */
bme680_g.dev_id = BME680_I2C_ADDR_PRIMARY;
bme680_g.intf = BME680_I2C_INTF;
/* User configurable I2C configuration */
bme680_g.write = bus_write;
bme680_g.read = bus_read;
bme680_g.delay_ms = sleep;
/* Initialize BME680 API */
ret.bme680_status = bme680_init(&bme680_g);
if (ret.bme680_status != BME680_OK)
{
return ret;
}
/* Initialize BSEC library */
ret.bsec_status = bsec_init();
if (ret.bsec_status != BSEC_OK)
{
return ret;
}
/* Load library config, if available */
bsec_config_len = config_load(bsec_config, sizeof(bsec_config));
if (bsec_config_len != 0)
{
ret.bsec_status = bsec_set_configuration(bsec_config, bsec_config_len, work_buffer, sizeof(work_buffer));
if (ret.bsec_status != BSEC_OK)
{
return ret;
}
}
/* Load previous library state, if available */
bsec_state_len = state_load(bsec_state, sizeof(bsec_state));
if (bsec_state_len != 0)
{
ret.bsec_status = bsec_set_state(bsec_state, bsec_state_len, work_buffer, sizeof(work_buffer));
if (ret.bsec_status != BSEC_OK)
{
return ret;
}
}
/* Set temperature offset */
bme680_temperature_offset_g = temperature_offset;
/* Call to the function which sets the library with subscription information */
ret.bsec_status = bme680_bsec_update_subscription(sample_rate);
if (ret.bsec_status != BSEC_OK)
{
return ret;
}
return ret;
}
/*!
* @brief Trigger the measurement based on sensor settings
*
* @param[in] sensor_settings settings of the BME680 sensor adopted by sensor control function
* @param[in] sleep pointer to the system specific sleep function
*
* @return none
*/
static void bme680_bsec_trigger_measurement(bsec_bme_settings_t *sensor_settings, sleep_fct sleep)
{
uint16_t meas_period;
uint8_t set_required_settings;
int8_t bme680_status = BME680_OK;
/* Check if a forced-mode measurement should be triggered now */
if (sensor_settings->trigger_measurement)
{
/* Set sensor configuration */
bme680_g.tph_sett.os_hum = sensor_settings->humidity_oversampling;
bme680_g.tph_sett.os_pres = sensor_settings->pressure_oversampling;
bme680_g.tph_sett.os_temp = sensor_settings->temperature_oversampling;
bme680_g.gas_sett.run_gas = sensor_settings->run_gas;
bme680_g.gas_sett.heatr_temp = sensor_settings->heater_temperature; /* degree Celsius */
bme680_g.gas_sett.heatr_dur = sensor_settings->heating_duration; /* milliseconds */
/* Select the power mode */
/* Must be set before writing the sensor configuration */
bme680_g.power_mode = BME680_FORCED_MODE;
/* Set the required sensor settings needed */
set_required_settings = BME680_OST_SEL | BME680_OSP_SEL | BME680_OSH_SEL | BME680_GAS_SENSOR_SEL;
/* Set the desired sensor configuration */
bme680_status = bme680_set_sensor_settings(set_required_settings, &bme680_g);
/* Set power mode as forced mode and trigger forced mode measurement */
bme680_status = bme680_set_sensor_mode(&bme680_g);
/* Get the total measurement duration so as to sleep or wait till the measurement is complete */
bme680_get_profile_dur(&meas_period, &bme680_g);
/* Delay till the measurement is ready. Timestamp resolution in ms */
sleep((uint32_t)meas_period);
}
/* Call the API to get current operation mode of the sensor */
bme680_status = bme680_get_sensor_mode(&bme680_g);
/* When the measurement is completed and data is ready for reading, the sensor must be in BME680_SLEEP_MODE.
* Read operation mode to check whether measurement is completely done and wait until the sensor is no more
* in BME680_FORCED_MODE. */
while (bme680_g.power_mode == BME680_FORCED_MODE)
{
/* sleep for 5 ms */
sleep(5);
bme680_status = bme680_get_sensor_mode(&bme680_g);
}
}
/*!
* @brief Read the data from registers and populate the inputs structure to be passed to do_steps function
*
* @param[in] time_stamp_trigger settings of the sensor returned from sensor control function
* @param[in] inputs input structure containing the information on sensors to be passed to do_steps
* @param[in] num_bsec_inputs number of inputs to be passed to do_steps
* @param[in] bsec_process_data process data variable returned from sensor_control
*
* @return none
*/
static void bme680_bsec_read_data(int64_t time_stamp_trigger, bsec_input_t *inputs, uint8_t *num_bsec_inputs,
int32_t bsec_process_data)
{
static struct bme680_field_data data;
int8_t bme680_status = BME680_OK;
/* We only have to read data if the previous call the bsec_sensor_control() actually asked for it */
if (bsec_process_data)
{
bme680_status = bme680_get_sensor_data(&data, &bme680_g);
if (data.status & BME680_NEW_DATA_MSK)
{
/* Pressure to be processed by BSEC */
if (bsec_process_data & BSEC_PROCESS_PRESSURE)
{
/* Place presssure sample into input struct */
inputs[*num_bsec_inputs].sensor_id = BSEC_INPUT_PRESSURE;
inputs[*num_bsec_inputs].signal = data.pressure;
inputs[*num_bsec_inputs].time_stamp = time_stamp_trigger;
(*num_bsec_inputs)++;
}
/* Temperature to be processed by BSEC */
if (bsec_process_data & BSEC_PROCESS_TEMPERATURE)
{
/* Place temperature sample into input struct */
inputs[*num_bsec_inputs].sensor_id = BSEC_INPUT_TEMPERATURE;
#ifdef BME680_FLOAT_POINT_COMPENSATION
inputs[*num_bsec_inputs].signal = data.temperature;
#else
inputs[*num_bsec_inputs].signal = data.temperature / 100.0f;
#endif
inputs[*num_bsec_inputs].time_stamp = time_stamp_trigger;
(*num_bsec_inputs)++;
/* Also add optional heatsource input which will be subtracted from the temperature reading to
* compensate for device-specific self-heating (supported in BSEC IAQ solution)*/
inputs[*num_bsec_inputs].sensor_id = BSEC_INPUT_HEATSOURCE;
inputs[*num_bsec_inputs].signal = bme680_temperature_offset_g;
inputs[*num_bsec_inputs].time_stamp = time_stamp_trigger;
(*num_bsec_inputs)++;
}
/* Humidity to be processed by BSEC */
if (bsec_process_data & BSEC_PROCESS_HUMIDITY)
{
/* Place humidity sample into input struct */
inputs[*num_bsec_inputs].sensor_id = BSEC_INPUT_HUMIDITY;
#ifdef BME680_FLOAT_POINT_COMPENSATION
inputs[*num_bsec_inputs].signal = data.humidity;
#else
inputs[*num_bsec_inputs].signal = data.humidity / 1000.0f;
#endif
inputs[*num_bsec_inputs].time_stamp = time_stamp_trigger;
(*num_bsec_inputs)++;
}
/* Gas to be processed by BSEC */
if (bsec_process_data & BSEC_PROCESS_GAS)
{
/* Check whether gas_valid flag is set */
if(data.status & BME680_GASM_VALID_MSK)
{
/* Place sample into input struct */
inputs[*num_bsec_inputs].sensor_id = BSEC_INPUT_GASRESISTOR;
inputs[*num_bsec_inputs].signal = data.gas_resistance;
inputs[*num_bsec_inputs].time_stamp = time_stamp_trigger;
(*num_bsec_inputs)++;
}
}
}
}
}
/*!
* @brief This function is written to process the sensor data for the requested virtual sensors
*
* @param[in] bsec_inputs input structure containing the information on sensors to be passed to do_steps
* @param[in] num_bsec_inputs number of inputs to be passed to do_steps
* @param[in] output_ready pointer to the function processing obtained BSEC outputs
*
* @return none
*/
static void bme680_bsec_process_data(bsec_input_t *bsec_inputs, uint8_t num_bsec_inputs, output_ready_fct output_ready)
{
/* Output buffer set to the maximum virtual sensor outputs supported */
bsec_output_t bsec_outputs[BSEC_NUMBER_OUTPUTS];
uint8_t num_bsec_outputs = 0;
uint8_t index = 0;
bsec_library_return_t bsec_status = BSEC_OK;
int64_t timestamp = 0;
float iaq = 0.0f;
uint8_t iaq_accuracy = 0;
float temp = 0.0f;
float raw_temp = 0.0f;
float raw_pressure = 0.0f;
float humidity = 0.0f;
float raw_humidity = 0.0f;
float raw_gas = 0.0f;
float static_iaq = 0.0f;
uint8_t static_iaq_accuracy = 0;
float co2_equivalent = 0.0f;
uint8_t co2_accuracy = 0;
float breath_voc_equivalent = 0.0f;
uint8_t breath_voc_accuracy = 0;
float comp_gas_value = 0.0f;
uint8_t comp_gas_accuracy = 0;
float gas_percentage = 0.0f;
uint8_t gas_percentage_acccuracy = 0;
/* Check if something should be processed by BSEC */
if (num_bsec_inputs > 0)
{
/* Set number of outputs to the size of the allocated buffer */
/* BSEC_NUMBER_OUTPUTS to be defined */
num_bsec_outputs = BSEC_NUMBER_OUTPUTS;
/* Perform processing of the data by BSEC
Note:
* The number of outputs you get depends on what you asked for during bsec_update_subscription(). This is
handled under bme680_bsec_update_subscription() function in this example file.
* The number of actual outputs that are returned is written to num_bsec_outputs. */
bsec_status = bsec_do_steps(bsec_inputs, num_bsec_inputs, bsec_outputs, &num_bsec_outputs);
/* Iterate through the outputs and extract the relevant ones. */
for (index = 0; index < num_bsec_outputs; index++)
{
switch (bsec_outputs[index].sensor_id)
{
case BSEC_OUTPUT_IAQ:
iaq = bsec_outputs[index].signal;
iaq_accuracy = bsec_outputs[index].accuracy;
break;
case BSEC_OUTPUT_STATIC_IAQ:
static_iaq = bsec_outputs[index].signal;
static_iaq_accuracy = bsec_outputs[index].accuracy;
break;
case BSEC_OUTPUT_CO2_EQUIVALENT:
co2_equivalent = bsec_outputs[index].signal;
co2_accuracy = bsec_outputs[index].accuracy;
break;
case BSEC_OUTPUT_BREATH_VOC_EQUIVALENT:
breath_voc_equivalent = bsec_outputs[index].signal;
breath_voc_accuracy = bsec_outputs[index].accuracy;
break;
case BSEC_OUTPUT_SENSOR_HEAT_COMPENSATED_TEMPERATURE:
temp = bsec_outputs[index].signal;
break;
case BSEC_OUTPUT_RAW_PRESSURE:
raw_pressure = bsec_outputs[index].signal;
break;
case BSEC_OUTPUT_SENSOR_HEAT_COMPENSATED_HUMIDITY:
humidity = bsec_outputs[index].signal;
break;
case BSEC_OUTPUT_RAW_GAS:
raw_gas = bsec_outputs[index].signal;
break;
case BSEC_OUTPUT_RAW_TEMPERATURE:
raw_temp = bsec_outputs[index].signal;
break;
case BSEC_OUTPUT_RAW_HUMIDITY:
raw_humidity = bsec_outputs[index].signal;
break;
case BSEC_OUTPUT_COMPENSATED_GAS:
comp_gas_value = bsec_outputs[index].signal;
comp_gas_accuracy = bsec_outputs[index].accuracy;
break;
case BSEC_OUTPUT_GAS_PERCENTAGE:
gas_percentage = bsec_outputs[index].signal;
gas_percentage_acccuracy = bsec_outputs[index].accuracy;
break;
default:
continue;
}
/* Assume that all the returned timestamps are the same */
timestamp = bsec_outputs[index].time_stamp;
}
/* Pass the extracted outputs to the user provided output_ready() function. */
output_ready(timestamp, iaq, iaq_accuracy, temp, humidity, raw_pressure, raw_temp,
raw_humidity, raw_gas, bsec_status, static_iaq, co2_equivalent, breath_voc_equivalent);
}
}
/*!
* @brief Runs the main (endless) loop that queries sensor settings, applies them, and processes the measured data
*
* @param[in] sleep pointer to the system specific sleep function
* @param[in] get_timestamp_us pointer to the system specific timestamp derivation function
* @param[in] output_ready pointer to the function processing obtained BSEC outputs
* @param[in] state_save pointer to the system-specific state save function
* @param[in] save_intvl interval at which BSEC state should be saved (in samples)
*
* @return none
*/
void bsec_iot_loop(sleep_fct sleep, get_timestamp_us_fct get_timestamp_us, output_ready_fct output_ready,
state_save_fct state_save, uint32_t save_intvl)
{
/* Timestamp variables */
int64_t time_stamp = 0;
int64_t time_stamp_interval_ms = 0;
/* Allocate enough memory for up to BSEC_MAX_PHYSICAL_SENSOR physical inputs*/
bsec_input_t bsec_inputs[BSEC_MAX_PHYSICAL_SENSOR];
/* Number of inputs to BSEC */
uint8_t num_bsec_inputs = 0;
/* BSEC sensor settings struct */
bsec_bme_settings_t sensor_settings;
/* Save state variables */
uint8_t bsec_state[BSEC_MAX_STATE_BLOB_SIZE];
uint8_t work_buffer[BSEC_MAX_STATE_BLOB_SIZE];
uint32_t bsec_state_len = 0;
uint32_t n_samples = 0;
bsec_library_return_t bsec_status = BSEC_OK;
while (1)
{
/* get the timestamp in nanoseconds before calling bsec_sensor_control() */
time_stamp = get_timestamp_us() * 1000;
/* Retrieve sensor settings to be used in this time instant by calling bsec_sensor_control */
bsec_sensor_control(time_stamp, &sensor_settings);
/* Trigger a measurement if necessary */
bme680_bsec_trigger_measurement(&sensor_settings, sleep);
/* Read data from last measurement */
num_bsec_inputs = 0;
bme680_bsec_read_data(time_stamp, bsec_inputs, &num_bsec_inputs, sensor_settings.process_data);
/* Time to invoke BSEC to perform the actual processing */
bme680_bsec_process_data(bsec_inputs, num_bsec_inputs, output_ready);
/* Increment sample counter */
n_samples++;
/* Retrieve and store state if the passed save_intvl */
if (n_samples >= save_intvl)
{
bsec_status = bsec_get_state(0, bsec_state, sizeof(bsec_state), work_buffer, sizeof(work_buffer), &bsec_state_len);
if (bsec_status == BSEC_OK)
{
state_save(bsec_state, bsec_state_len);
}
n_samples = 0;
}
/* Compute how long we can sleep until we need to call bsec_sensor_control() next */
/* Time_stamp is converted from microseconds to nanoseconds first and then the difference to milliseconds */
time_stamp_interval_ms = (sensor_settings.next_call - get_timestamp_us() * 1000) / 1000000;
if (time_stamp_interval_ms > 0)
{
sleep((uint32_t)time_stamp_interval_ms);
}
}
}
/*! @}*/