275 lines
10 KiB
Arduino
275 lines
10 KiB
Arduino
|
/*******************************************************************************
|
||
|
* The Things Network - Sensor Data Example
|
||
|
*
|
||
|
* Example of sending a valid LoRaWAN packet with DHT22 temperature and
|
||
|
* humidity data to The Things Networ using a Feather M0 LoRa.
|
||
|
*
|
||
|
* Learn Guide: https://learn.adafruit.com/the-things-network-for-feather
|
||
|
*
|
||
|
* Copyright (c) 2015 Thomas Telkamp and Matthijs Kooijman
|
||
|
* Copyright (c) 2018 Terry Moore, MCCI
|
||
|
* Copyright (c) 2018 Brent Rubell, Adafruit Industries
|
||
|
*
|
||
|
* Permission is hereby granted, free of charge, to anyone
|
||
|
* obtaining a copy of this document and accompanying files,
|
||
|
* to do whatever they want with them without any restriction,
|
||
|
* including, but not limited to, copying, modification and redistribution.
|
||
|
* NO WARRANTY OF ANY KIND IS PROVIDED.
|
||
|
*******************************************************************************/
|
||
|
#include <lmic.h>
|
||
|
#include <hal/hal.h>
|
||
|
#include <SPI.h>
|
||
|
|
||
|
// include the DHT22 Sensor Library
|
||
|
#include "DHT.h"
|
||
|
|
||
|
// DHT digital pin and sensor type
|
||
|
#define DHTPIN 10
|
||
|
#define DHTTYPE DHT22
|
||
|
|
||
|
//
|
||
|
// For normal use, we require that you edit the sketch to replace FILLMEIN
|
||
|
// with values assigned by the TTN console. However, for regression tests,
|
||
|
// we want to be able to compile these scripts. The regression tests define
|
||
|
// COMPILE_REGRESSION_TEST, and in that case we define FILLMEIN to a non-
|
||
|
// working but innocuous value.
|
||
|
//
|
||
|
#ifdef COMPILE_REGRESSION_TEST
|
||
|
#define FILLMEIN 0
|
||
|
#else
|
||
|
#warning "You must replace the values marked FILLMEIN with real values from the TTN control panel!"
|
||
|
#define FILLMEIN (#dont edit this, edit the lines that use FILLMEIN)
|
||
|
#endif
|
||
|
|
||
|
// This EUI must be in little-endian format, so least-significant-byte
|
||
|
// first. When copying an EUI from ttnctl output, this means to reverse
|
||
|
// the bytes. For TTN issued EUIs the last bytes should be 0xD5, 0xB3,
|
||
|
// 0x70.
|
||
|
static const u1_t PROGMEM APPEUI[8] = { FILLMEIN };
|
||
|
void os_getArtEui (u1_t* buf) { memcpy_P(buf, APPEUI, 8);}
|
||
|
|
||
|
// This should also be in little endian format, see above.
|
||
|
static const u1_t PROGMEM DEVEUI[8] = { FILLMEIN };
|
||
|
void os_getDevEui (u1_t* buf) { memcpy_P(buf, DEVEUI, 8);}
|
||
|
|
||
|
// This key should be in big endian format (or, since it is not really a
|
||
|
// number but a block of memory, endianness does not really apply). In
|
||
|
// practice, a key taken from the TTN console can be copied as-is.
|
||
|
static const u1_t PROGMEM APPKEY[16] = { FILLMEIN };
|
||
|
void os_getDevKey (u1_t* buf) { memcpy_P(buf, APPKEY, 16);}
|
||
|
|
||
|
// payload to send to TTN gateway
|
||
|
static uint8_t payload[5];
|
||
|
static osjob_t sendjob;
|
||
|
|
||
|
// Schedule TX every this many seconds (might become longer due to duty
|
||
|
// cycle limitations).
|
||
|
const unsigned TX_INTERVAL = 30;
|
||
|
|
||
|
// Pin mapping for Adafruit Feather M0 LoRa
|
||
|
const lmic_pinmap lmic_pins = {
|
||
|
.nss = 8,
|
||
|
.rxtx = LMIC_UNUSED_PIN,
|
||
|
.rst = 4,
|
||
|
.dio = {3, 6, LMIC_UNUSED_PIN},
|
||
|
.rxtx_rx_active = 0,
|
||
|
.rssi_cal = 8, // LBT cal for the Adafruit Feather M0 LoRa, in dB
|
||
|
.spi_freq = 8000000,
|
||
|
};
|
||
|
|
||
|
// init. DHT
|
||
|
DHT dht(DHTPIN, DHTTYPE);
|
||
|
|
||
|
void onEvent (ev_t ev) {
|
||
|
Serial.print(os_getTime());
|
||
|
Serial.print(": ");
|
||
|
switch(ev) {
|
||
|
case EV_SCAN_TIMEOUT:
|
||
|
Serial.println(F("EV_SCAN_TIMEOUT"));
|
||
|
break;
|
||
|
case EV_BEACON_FOUND:
|
||
|
Serial.println(F("EV_BEACON_FOUND"));
|
||
|
break;
|
||
|
case EV_BEACON_MISSED:
|
||
|
Serial.println(F("EV_BEACON_MISSED"));
|
||
|
break;
|
||
|
case EV_BEACON_TRACKED:
|
||
|
Serial.println(F("EV_BEACON_TRACKED"));
|
||
|
break;
|
||
|
case EV_JOINING:
|
||
|
Serial.println(F("EV_JOINING"));
|
||
|
break;
|
||
|
case EV_JOINED:
|
||
|
Serial.println(F("EV_JOINED"));
|
||
|
{
|
||
|
u4_t netid = 0;
|
||
|
devaddr_t devaddr = 0;
|
||
|
u1_t nwkKey[16];
|
||
|
u1_t artKey[16];
|
||
|
LMIC_getSessionKeys(&netid, &devaddr, nwkKey, artKey);
|
||
|
Serial.print("netid: ");
|
||
|
Serial.println(netid, DEC);
|
||
|
Serial.print("devaddr: ");
|
||
|
Serial.println(devaddr, HEX);
|
||
|
Serial.print("artKey: ");
|
||
|
for (int i=0; i<sizeof(artKey); ++i) {
|
||
|
if (i != 0)
|
||
|
Serial.print("-");
|
||
|
Serial.print(artKey[i], HEX);
|
||
|
}
|
||
|
Serial.println("");
|
||
|
Serial.print("nwkKey: ");
|
||
|
for (int i=0; i<sizeof(nwkKey); ++i) {
|
||
|
if (i != 0)
|
||
|
Serial.print("-");
|
||
|
Serial.print(nwkKey[i], HEX);
|
||
|
}
|
||
|
Serial.println("");
|
||
|
}
|
||
|
// Disable link check validation (automatically enabled
|
||
|
// during join, but because slow data rates change max TX
|
||
|
// size, we don't use it in this example.
|
||
|
LMIC_setLinkCheckMode(0);
|
||
|
break;
|
||
|
/*
|
||
|
|| This event is defined but not used in the code. No
|
||
|
|| point in wasting codespace on it.
|
||
|
||
|
||
|
|| case EV_RFU1:
|
||
|
|| Serial.println(F("EV_RFU1"));
|
||
|
|| break;
|
||
|
*/
|
||
|
case EV_JOIN_FAILED:
|
||
|
Serial.println(F("EV_JOIN_FAILED"));
|
||
|
break;
|
||
|
case EV_REJOIN_FAILED:
|
||
|
Serial.println(F("EV_REJOIN_FAILED"));
|
||
|
break;
|
||
|
break;
|
||
|
case EV_TXCOMPLETE:
|
||
|
Serial.println(F("EV_TXCOMPLETE (includes waiting for RX windows)"));
|
||
|
if (LMIC.txrxFlags & TXRX_ACK)
|
||
|
Serial.println(F("Received ack"));
|
||
|
if (LMIC.dataLen) {
|
||
|
Serial.println(F("Received "));
|
||
|
Serial.println(LMIC.dataLen);
|
||
|
Serial.println(F(" bytes of payload"));
|
||
|
}
|
||
|
// Schedule next transmission
|
||
|
os_setTimedCallback(&sendjob, os_getTime()+sec2osticks(TX_INTERVAL), do_send);
|
||
|
break;
|
||
|
case EV_LOST_TSYNC:
|
||
|
Serial.println(F("EV_LOST_TSYNC"));
|
||
|
break;
|
||
|
case EV_RESET:
|
||
|
Serial.println(F("EV_RESET"));
|
||
|
break;
|
||
|
case EV_RXCOMPLETE:
|
||
|
// data received in ping slot
|
||
|
Serial.println(F("EV_RXCOMPLETE"));
|
||
|
break;
|
||
|
case EV_LINK_DEAD:
|
||
|
Serial.println(F("EV_LINK_DEAD"));
|
||
|
break;
|
||
|
case EV_LINK_ALIVE:
|
||
|
Serial.println(F("EV_LINK_ALIVE"));
|
||
|
break;
|
||
|
/*
|
||
|
|| This event is defined but not used in the code. No
|
||
|
|| point in wasting codespace on it.
|
||
|
||
|
||
|
|| case EV_SCAN_FOUND:
|
||
|
|| Serial.println(F("EV_SCAN_FOUND"));
|
||
|
|| break;
|
||
|
*/
|
||
|
case EV_TXSTART:
|
||
|
Serial.println(F("EV_TXSTART"));
|
||
|
break;
|
||
|
default:
|
||
|
Serial.print(F("Unknown event: "));
|
||
|
Serial.println((unsigned) ev);
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void do_send(osjob_t* j){
|
||
|
// Check if there is not a current TX/RX job running
|
||
|
if (LMIC.opmode & OP_TXRXPEND) {
|
||
|
Serial.println(F("OP_TXRXPEND, not sending"));
|
||
|
} else {
|
||
|
// read the temperature from the DHT22
|
||
|
float temperature = dht.readTemperature();
|
||
|
Serial.print("Temperature: "); Serial.print(temperature);
|
||
|
Serial.println(" *C");
|
||
|
// adjust for the f2sflt16 range (-1 to 1)
|
||
|
temperature = temperature / 100;
|
||
|
|
||
|
// read the humidity from the DHT22
|
||
|
float rHumidity = dht.readHumidity();
|
||
|
Serial.print("%RH ");
|
||
|
Serial.println(rHumidity);
|
||
|
// adjust for the f2sflt16 range (-1 to 1)
|
||
|
rHumidity = rHumidity / 100;
|
||
|
|
||
|
// float -> int
|
||
|
// note: this uses the sflt16 datum (https://github.com/mcci-catena/arduino-lmic#sflt16)
|
||
|
uint16_t payloadTemp = LMIC_f2sflt16(temperature);
|
||
|
// int -> bytes
|
||
|
byte tempLow = lowByte(payloadTemp);
|
||
|
byte tempHigh = highByte(payloadTemp);
|
||
|
// place the bytes into the payload
|
||
|
payload[0] = tempLow;
|
||
|
payload[1] = tempHigh;
|
||
|
|
||
|
// float -> int
|
||
|
uint16_t payloadHumid = LMIC_f2sflt16(rHumidity);
|
||
|
// int -> bytes
|
||
|
byte humidLow = lowByte(payloadHumid);
|
||
|
byte humidHigh = highByte(payloadHumid);
|
||
|
payload[2] = humidLow;
|
||
|
payload[3] = humidHigh;
|
||
|
|
||
|
// prepare upstream data transmission at the next possible time.
|
||
|
// transmit on port 1 (the first parameter); you can use any value from 1 to 223 (others are reserved).
|
||
|
// don't request an ack (the last parameter, if not zero, requests an ack from the network).
|
||
|
// Remember, acks consume a lot of network resources; don't ask for an ack unless you really need it.
|
||
|
LMIC_setTxData2(1, payload, sizeof(payload)-1, 0);
|
||
|
}
|
||
|
// Next TX is scheduled after TX_COMPLETE event.
|
||
|
}
|
||
|
|
||
|
void setup() {
|
||
|
delay(5000);
|
||
|
while (! Serial);
|
||
|
Serial.begin(9600);
|
||
|
Serial.println(F("Starting"));
|
||
|
|
||
|
dht.begin();
|
||
|
|
||
|
// LMIC init
|
||
|
os_init();
|
||
|
// Reset the MAC state. Session and pending data transfers will be discarded.
|
||
|
LMIC_reset();
|
||
|
// Disable link-check mode and ADR, because ADR tends to complicate testing.
|
||
|
LMIC_setLinkCheckMode(0);
|
||
|
// Set the data rate to Spreading Factor 7. This is the fastest supported rate for 125 kHz channels, and it
|
||
|
// minimizes air time and battery power. Set the transmission power to 14 dBi (25 mW).
|
||
|
LMIC_setDrTxpow(DR_SF7,14);
|
||
|
// in the US, with TTN, it saves join time if we start on subband 1 (channels 8-15). This will
|
||
|
// get overridden after the join by parameters from the network. If working with other
|
||
|
// networks or in other regions, this will need to be changed.
|
||
|
LMIC_selectSubBand(1);
|
||
|
|
||
|
// Start job (sending automatically starts OTAA too)
|
||
|
do_send(&sendjob);
|
||
|
}
|
||
|
|
||
|
void loop() {
|
||
|
// we call the LMIC's runloop processor. This will cause things to happen based on events and time. One
|
||
|
// of the things that will happen is callbacks for transmission complete or received messages. We also
|
||
|
// use this loop to queue periodic data transmissions. You can put other things here in the `loop()` routine,
|
||
|
// but beware that LoRaWAN timing is pretty tight, so if you do more than a few milliseconds of work, you
|
||
|
// will want to call `os_runloop_once()` every so often, to keep the radio running.
|
||
|
os_runloop_once();
|
||
|
}
|