Paxcounter is a proof-of-concept device for metering passenger flows in realtime. It counts how many mobile devices are around. This gives an estimation how many people are around. Paxcounter detects Wifi and Bluetooth signals in the air, focusing on mobile devices by filtering vendor OUIs in the MAC adress.
Intention of this project is to do this without intrusion in privacy: You don't need to track people owned devices, if you just want to count them. Therefore, Paxcounter does not persistenly store MAC adresses and does no kind of fingerprinting the scanned devices.
Before compiling the code, create file loraconf.h in the /src directory from the template [loraconf.sample.h](https://github.com/cyberman54/ESP32-Paxcounter/blob/master/src/loraconf.sample.h) and populate it with your personal APPEUI und APPKEY for the LoRaWAN network. Only OTAA join is supported, not ABP. The DEVEUI will be derived from the device's MAC adress during device startup and is shown as well on the device's display (if it has one) as on the serial console for copying it to your LoRaWAN network server settings. If you enter a DEVEUI in loraconf.h it will be used instead.
To upload the code to your ESP32 board this needs to be switched from run to bootloader mode. Boards with USB bridge like Heltec and TTGO usually have an onboard logic which allows soft switching by the upload tool. In PlatformIO this happenes automatically.<p>
The LoPy/LoPy4 board needs to be set manually. See these
<AHREF="https://www.thethingsnetwork.org/labs/story/program-your-lopy-from-the-arduino-ide-using-lmic">instructions</A> how to do it.<p>
For the LoPy/LoPy4 the original Pycom firmware is not needed here, so there is no need to update it before flashing Paxcounter. Just flash the paxcounter code on your LoPy/LoPy4. If you want to go back to the Pycom firmware, no problem. Download the firmware from Pycom and flash it over.
**Depending on your country's laws it may be illegal to sniff wireless networks for MAC addresses. Please check and respect your country's laws before using this code!**
(e.g. US citizens may want to check [Section 18 U.S. Code § 2511](https://www.law.cornell.edu/uscode/text/18/2511) and [discussion](https://github.com/schollz/howmanypeoplearearound/issues/4) on this)
(e.g. UK citizens may want to check [Data Protection Act 1998](https://ico.org.uk/media/1560691/wi-fi-location-analytics-guidance.pdf) and [GDPR 2018](https://ico.org.uk/for-organisations/guide-to-the-general-data-protection-regulation-gdpr/key-definitions/))
(e.g. Citizens in the the Netherlands may want to read [this article](https://www.ivir.nl/publicaties/download/PrivacyInformatie_2016_6.pdf))
Note: If you use this software you do this at your own risk. That means that you alone - not the authors of this software - are responsible for the legal compliance of an application using this or build from this software and/or usage of a device created using this software. You should take special care and get prior legal advice if you plan metering passengers in public areas and/or publish data drawn from doing so.
Disclosure: The Paxcounter code stores scanned MAC adresses in the device's RAM, and keeps it in RAM temporary for a configurable scan cycle time (default 240 seconds). After each scan cycle the collected MAC data is erased from RAM. MAC data never is transferred to the LoRaWAN network. No kind of tracking and no persistent storing of MAC data or timestamps on the device and no other kind of analytics than counting is implemented in this code. Wireless networks are not touched by this code, but MAC adresses from wireless devices as well within as not within wireless networks, regardless if encrypted or unencrypted, are made visible and scanned by this code. The same applies to Bluetooth MACs, if the bluetooth option in the code is enabled.
# Payload format description
FPort1:
byte 1: 16-bit Wifi counter, MSB
byte 2: 16-bit Wifi counter, LSB
byte 3: 16-bit BLE counter, MSB
byte 4: 16-bit BLE counter, LSB
FPort2:
see remote command set
# Remote command set
The device listenes for remote control commands on LoRaWAN Port 2.
Each command is followed by exactly one parameter.
Multiple command/parameter pairs can be concatenated and sent in one single payload downlink.
Note: all settings are stored in NVRAM and will be reloaded when device starts. To reset device to factory settings press button (if device has one), or send remote command 09 02 09 00 unconfirmed(!) once.
0x01 set Wifi scan RSSI limit
1 ... 255 used for wifi scan radius (greater values increase wifi scan radius, values 50...110 make sense)
0 = Wifi rssi limiter disabled [default]
0x02 set counter mode
0 = cyclic unconfirmed, mac counter reset after each wifi scan cycle, data is sent only once [default]
1 = cumulative counter, mac counter is never reset
2 = cyclic confirmed, like 0 but data is resent until confirmation by network received
0x03 set screen saver mode
0 = screen saver off [default]
1 = screen saver on
0x04 set display on/off
0 = display off
1 = display on [default]
0x05 set LoRa spread factor
7 ... 12 [default: 9]
0x06 set LoRa TXpower
2 ... 15 [default: 15]
0x07 set LoRa Adaptive Data Rate mode
0 = ADR off
1 = ADR on [default]
note: set ADR to off, if device is moving, set to on, if not.
0x08 do nothing
useful to clear pending commands from LoRaWAN server quere, or to check RSSI on device
0x09 reset functions
0 = restart device
1 = reset MAC counter to zero
2 = reset device to factory settings
0x0A set Wifi scan cycle timer
0 ... 255 duration of a wifi scan cycle in seconds/2
e.g. 120 -> 1 cycle runs for 240 seconds
0x0B set Wifi channel switch interval timer
0 ... 255 timeout for scanning 1 wifi channel in seconds/100
e.g. 50 -> each channel is scanned for 0,5 seconds
see file <AHREF="https://github.com/cyberman54/ESP32-Paxcounter/blob/master/LICENSE">LICENSE.txt</A> in this repository. Refer to each individual source file for more details.