294 lines
9.9 KiB
Arduino
294 lines
9.9 KiB
Arduino
|
/*******************************************************************************
|
||
|
* Copyright (c) 2015 Thomas Telkamp and Matthijs Kooijman
|
||
|
* Copyright (c) 2018 Terry Moore, MCCI
|
||
|
*
|
||
|
* Permission is hereby granted, free of charge, to anyone
|
||
|
* obtaining a copy of this document and accompanying files,
|
||
|
* to do whatever they want with them without any restriction,
|
||
|
* including, but not limited to, copying, modification and redistribution.
|
||
|
* NO WARRANTY OF ANY KIND IS PROVIDED.
|
||
|
*
|
||
|
* This example sends a valid LoRaWAN packet with payload "Hello,
|
||
|
* world!", using frequency and encryption settings matching those of
|
||
|
* the The Things Network.
|
||
|
*
|
||
|
* This uses OTAA (Over-the-air activation), where where a DevEUI and
|
||
|
* application key is configured, which are used in an over-the-air
|
||
|
* activation procedure where a DevAddr and session keys are
|
||
|
* assigned/generated for use with all further communication.
|
||
|
*
|
||
|
* Note: LoRaWAN per sub-band duty-cycle limitation is enforced (1% in
|
||
|
* g1, 0.1% in g2), but not the TTN fair usage policy (which is probably
|
||
|
* violated by this sketch when left running for longer)!
|
||
|
|
||
|
* To use this sketch, first register your application and device with
|
||
|
* the things network, to set or generate an AppEUI, DevEUI and AppKey.
|
||
|
* Multiple devices can use the same AppEUI, but each device has its own
|
||
|
* DevEUI and AppKey.
|
||
|
*
|
||
|
* Do not forget to define the radio type correctly in config.h.
|
||
|
*
|
||
|
*******************************************************************************/
|
||
|
|
||
|
#include <Time.h>
|
||
|
#include <lmic.h>
|
||
|
#include <hal/hal.h>
|
||
|
#include <SPI.h>
|
||
|
|
||
|
//
|
||
|
// For normal use, we require that you edit the sketch to replace FILLMEIN
|
||
|
// with values assigned by the TTN console. However, for regression tests,
|
||
|
// we want to be able to compile these scripts. The regression tests define
|
||
|
// COMPILE_REGRESSION_TEST, and in that case we define FILLMEIN to a non-
|
||
|
// working but innocuous value.
|
||
|
//
|
||
|
#ifdef COMPILE_REGRESSION_TEST
|
||
|
# define FILLMEIN 0
|
||
|
#else
|
||
|
# warning "You must replace the values marked FILLMEIN with real values from the TTN control panel!"
|
||
|
# define FILLMEIN (#dont edit this, edit the lines that use FILLMEIN)
|
||
|
#endif
|
||
|
|
||
|
|
||
|
// This EUI must be in little-endian format, so least-significant-byte
|
||
|
// first. When copying an EUI from ttnctl output, this means to reverse
|
||
|
// the bytes. For TTN issued EUIs the last bytes should be 0xD5, 0xB3,
|
||
|
// 0x70.
|
||
|
static const u1_t PROGMEM APPEUI[8]={ FILLMEIN };
|
||
|
void os_getArtEui (u1_t* buf) { memcpy_P(buf, APPEUI, 8);}
|
||
|
|
||
|
// This should also be in little endian format, see above.
|
||
|
static const u1_t PROGMEM DEVEUI[8]={ FILLMEIN };
|
||
|
void os_getDevEui (u1_t* buf) { memcpy_P(buf, DEVEUI, 8);}
|
||
|
|
||
|
// This key should be in big endian format (or, since it is not really a
|
||
|
// number but a block of memory, endianness does not really apply). In
|
||
|
// practice, a key taken from ttnctl can be copied as-is.
|
||
|
static const u1_t PROGMEM APPKEY[16] = { FILLMEIN };
|
||
|
void os_getDevKey (u1_t* buf) { memcpy_P(buf, APPKEY, 16);}
|
||
|
|
||
|
static uint8_t mydata[] = "Hello, world!";
|
||
|
static osjob_t sendjob;
|
||
|
|
||
|
// Schedule TX every this many seconds (might become longer due to duty
|
||
|
// cycle limitations).
|
||
|
const unsigned TX_INTERVAL = 60;
|
||
|
|
||
|
// Pin mapping
|
||
|
const lmic_pinmap lmic_pins = {
|
||
|
.nss = 6,
|
||
|
.rxtx = LMIC_UNUSED_PIN,
|
||
|
.rst = 5,
|
||
|
.dio = {2, 3, 4},
|
||
|
};
|
||
|
|
||
|
void onEvent (ev_t ev) {
|
||
|
Serial.print(os_getTime());
|
||
|
Serial.print(": ");
|
||
|
switch(ev) {
|
||
|
case EV_SCAN_TIMEOUT:
|
||
|
Serial.println(F("EV_SCAN_TIMEOUT"));
|
||
|
break;
|
||
|
case EV_BEACON_FOUND:
|
||
|
Serial.println(F("EV_BEACON_FOUND"));
|
||
|
break;
|
||
|
case EV_BEACON_MISSED:
|
||
|
Serial.println(F("EV_BEACON_MISSED"));
|
||
|
break;
|
||
|
case EV_BEACON_TRACKED:
|
||
|
Serial.println(F("EV_BEACON_TRACKED"));
|
||
|
break;
|
||
|
case EV_JOINING:
|
||
|
Serial.println(F("EV_JOINING"));
|
||
|
break;
|
||
|
case EV_JOINED:
|
||
|
Serial.println(F("EV_JOINED"));
|
||
|
{
|
||
|
u4_t netid = 0;
|
||
|
devaddr_t devaddr = 0;
|
||
|
u1_t nwkKey[16];
|
||
|
u1_t artKey[16];
|
||
|
LMIC_getSessionKeys(&netid, &devaddr, nwkKey, artKey);
|
||
|
Serial.print("netid: ");
|
||
|
Serial.println(netid, DEC);
|
||
|
Serial.print("devaddr: ");
|
||
|
Serial.println(devaddr, HEX);
|
||
|
Serial.print("artKey: ");
|
||
|
for (int i=0; i<sizeof(artKey); ++i) {
|
||
|
Serial.print(artKey[i], HEX);
|
||
|
}
|
||
|
Serial.println("");
|
||
|
Serial.print("nwkKey: ");
|
||
|
for (int i=0; i<sizeof(nwkKey); ++i) {
|
||
|
Serial.print(nwkKey[i], HEX);
|
||
|
}
|
||
|
Serial.println("");
|
||
|
}
|
||
|
// Disable link check validation (automatically enabled
|
||
|
// during join, but because slow data rates change max TX
|
||
|
// size, we don't use it in this example.
|
||
|
LMIC_setLinkCheckMode(0);
|
||
|
break;
|
||
|
/*
|
||
|
|| This event is defined but not used in the code. No
|
||
|
|| point in wasting codespace on it.
|
||
|
||
|
||
|
|| case EV_RFU1:
|
||
|
|| Serial.println(F("EV_RFU1"));
|
||
|
|| break;
|
||
|
*/
|
||
|
case EV_JOIN_FAILED:
|
||
|
Serial.println(F("EV_JOIN_FAILED"));
|
||
|
break;
|
||
|
case EV_REJOIN_FAILED:
|
||
|
Serial.println(F("EV_REJOIN_FAILED"));
|
||
|
break;
|
||
|
case EV_TXCOMPLETE:
|
||
|
Serial.println(F("EV_TXCOMPLETE (includes waiting for RX windows)"));
|
||
|
if (LMIC.txrxFlags & TXRX_ACK)
|
||
|
Serial.println(F("Received ack"));
|
||
|
if (LMIC.dataLen) {
|
||
|
Serial.print(F("Received "));
|
||
|
Serial.print(LMIC.dataLen);
|
||
|
Serial.println(F(" bytes of payload"));
|
||
|
}
|
||
|
// Schedule next transmission
|
||
|
os_setTimedCallback(&sendjob, os_getTime() + sec2osticks(TX_INTERVAL), do_send);
|
||
|
break;
|
||
|
case EV_LOST_TSYNC:
|
||
|
Serial.println(F("EV_LOST_TSYNC"));
|
||
|
break;
|
||
|
case EV_RESET:
|
||
|
Serial.println(F("EV_RESET"));
|
||
|
break;
|
||
|
case EV_RXCOMPLETE:
|
||
|
// data received in ping slot
|
||
|
Serial.println(F("EV_RXCOMPLETE"));
|
||
|
break;
|
||
|
case EV_LINK_DEAD:
|
||
|
Serial.println(F("EV_LINK_DEAD"));
|
||
|
break;
|
||
|
case EV_LINK_ALIVE:
|
||
|
Serial.println(F("EV_LINK_ALIVE"));
|
||
|
break;
|
||
|
/*
|
||
|
|| This event is defined but not used in the code. No
|
||
|
|| point in wasting codespace on it.
|
||
|
||
|
||
|
|| case EV_SCAN_FOUND:
|
||
|
|| Serial.println(F("EV_SCAN_FOUND"));
|
||
|
|| break;
|
||
|
*/
|
||
|
case EV_TXSTART:
|
||
|
Serial.println(F("EV_TXSTART"));
|
||
|
break;
|
||
|
default:
|
||
|
Serial.print(F("Unknown event: "));
|
||
|
Serial.println((unsigned) ev);
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
uint32_t userUTCTime; // Seconds since the UTC epoch
|
||
|
|
||
|
// Utility function for digital clock display: prints preceding colon and
|
||
|
// leading 0
|
||
|
void printDigits(int digits) {
|
||
|
Serial.print(':');
|
||
|
if (digits < 10) Serial.print('0');
|
||
|
Serial.print(digits);
|
||
|
}
|
||
|
|
||
|
void user_request_network_time_callback(void *pVoidUserUTCTime, int flagSuccess) {
|
||
|
// Explicit conversion from void* to uint32_t* to avoid compiler errors
|
||
|
uint32_t *pUserUTCTime = (uint32_t *) pVoidUserUTCTime;
|
||
|
|
||
|
// A struct that will be populated by LMIC_getNetworkTimeReference.
|
||
|
// It contains the following fields:
|
||
|
// - tLocal: the value returned by os_GetTime() when the time
|
||
|
// request was sent to the gateway, and
|
||
|
// - tNetwork: the seconds between the GPS epoch and the time
|
||
|
// the gateway received the time request
|
||
|
lmic_time_reference_t lmicTimeReference;
|
||
|
|
||
|
if (flagSuccess != 1) {
|
||
|
Serial.println(F("USER CALLBACK: Not a success"));
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
// Populate "lmic_time_reference"
|
||
|
flagSuccess = LMIC_getNetworkTimeReference(&lmicTimeReference);
|
||
|
if (flagSuccess != 1) {
|
||
|
Serial.println(F("USER CALLBACK: LMIC_getNetworkTimeReference didn't succeed"));
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
// Update userUTCTime, considering the difference between the GPS and UTC
|
||
|
// epoch, and the leap seconds
|
||
|
*pUserUTCTime = lmicTimeReference.tNetwork + 315964800;
|
||
|
|
||
|
// Add the delay between the instant the time was transmitted and
|
||
|
// the current time
|
||
|
|
||
|
// Current time, in ticks
|
||
|
ostime_t ticksNow = os_getTime();
|
||
|
// Time when the request was sent, in ticks
|
||
|
ostime_t ticksRequestSent = lmicTimeReference.tLocal;
|
||
|
uint32_t requestDelaySec = osticks2ms(ticksNow - ticksRequestSent) / 1000;
|
||
|
*pUserUTCTime += requestDelaySec;
|
||
|
|
||
|
// Update the system time with the time read from the network
|
||
|
setTime(*pUserUTCTime);
|
||
|
|
||
|
Serial.print(F("The current UTC time is: "));
|
||
|
Serial.print(hour());
|
||
|
printDigits(minute());
|
||
|
printDigits(second());
|
||
|
Serial.print(' ');
|
||
|
Serial.print(day());
|
||
|
Serial.print('/');
|
||
|
Serial.print(month());
|
||
|
Serial.print('/');
|
||
|
Serial.print(year());
|
||
|
Serial.println();
|
||
|
}
|
||
|
|
||
|
void do_send(osjob_t* j) {
|
||
|
// Check if there is not a current TX/RX job running
|
||
|
if (LMIC.opmode & OP_TXRXPEND) {
|
||
|
Serial.println(F("OP_TXRXPEND, not sending"));
|
||
|
} else {
|
||
|
// Schedule a network time request at the next possible time
|
||
|
LMIC_requestNetworkTime(user_request_network_time_callback, &userUTCTime);
|
||
|
|
||
|
// Prepare upstream data transmission at the next possible time.
|
||
|
LMIC_setTxData2(1, mydata, sizeof(mydata)-1, 0);
|
||
|
Serial.println(F("Packet queued"));
|
||
|
}
|
||
|
// Next TX is scheduled after TX_COMPLETE event.
|
||
|
}
|
||
|
|
||
|
void setup() {
|
||
|
Serial.begin(9600);
|
||
|
Serial.println(F("Starting"));
|
||
|
|
||
|
#ifdef VCC_ENABLE
|
||
|
// For Pinoccio Scout boards
|
||
|
pinMode(VCC_ENABLE, OUTPUT);
|
||
|
digitalWrite(VCC_ENABLE, HIGH);
|
||
|
delay(1000);
|
||
|
#endif
|
||
|
|
||
|
// LMIC init
|
||
|
os_init();
|
||
|
// Reset the MAC state. Session and pending data transfers will be discarded.
|
||
|
LMIC_reset();
|
||
|
|
||
|
// Start job (sending automatically starts OTAA too)
|
||
|
do_send(&sendjob);
|
||
|
}
|
||
|
|
||
|
void loop() {
|
||
|
os_runloop_once();
|
||
|
}
|